求多个子串${s_1,...,s_n}$的序列组合问题.

2024-01-19 19:30:09 浏览数 (1)

求多个子串${s_1,...,s_n}$的序列组合问题.

核心点要关注多维DP数组所存储的信息, DP数组里的信息有:

  1. 字符串$s_i$和$s_j$相互比较的信息
    • 是一个隐马尔科夫的过程dpi的状态只与他的pre状态有关.
    • 其pre状态是根据状态转移方程来定的.
  2. 回溯时要从后往前回溯, 根据状态的变化规则和想要的最终字符串回溯即可.对于高纬度多个字符串相比较, 其也是一样的, 只不过状态转移方程的参数要变多.

下面是LCS和SCS的代码和回溯过程.

代码语言:python3复制
# %%

class Solution:
    def shortestCommonSupersequence(self, str1: str, str2: str) -> str:
        """Find the Shortest Super Sequence which contains srt1 and str2.  
            Input:  
                str1: an English word string.  
                str2: an English word string.
            Output:
                1. An English word string.
            Perfomance:
                O(n^2)
                O(n^2)
            Tips: 
                It's similar to the Longest Common Subsequence.  
                We just take a special strategy to regenerate string when it's different.
        """
        # Checks
        max_size_str = 10**5
        if str1 is None or str2 is None:
            raise Exception("The parameter is None.")
        if str1 == "" or str2 == "":
            return str2 str1
        if len(str1) > max_size_str or len(str2) > max_size_str:
            raise Exception(
                "The parameter is too long, please chang ohter algorithms.")
        a, b = len(str1), len(str2)
        # Dynamic Array.
        dp = [[0 for _ in range(b 1)] for _ in range(a 1)]
        for i in range(a):
            for j in range(b):
                if str1[i] == str2[j]:
                    # State Transition Equation. 1
                    dp[i 1][j 1] = dp[i][j]   1
                else:
                	# State Transition Equation. 2
                    dp[i 1][j 1] = max(dp[i 1][j], dp[i][j 1])
        # Regenerate SuperSequence.
        scs = []
        # Regenerate Subsequence.
        lcs = []
        while a > 0 and b > 0:
            # Common character
            if str1[a-1] == str2[b-1]:
                scs.append(str1[a-1])
                lcs.append(str1[a-1])
                a -= 1
                b -= 1
            elif dp[a][b] == dp[a-1][b]:
                scs.append(str1[a-1])
                a -= 1
            elif dp[a][b] == dp[a][b-1]:
                scs.append(str2[b-1])
                b -= 1
        scs = "".join(scs[::-1])
        # Recurse str1 or str2.
        # Then add the rest of characters.
        if a:
            scs = str1[:a] scs
        if b:
            scs = str2[:b] scs
        print("".join(lcs[::-1]))
        return scs


if __name__ == "__main__":
    s1, s2 = "bcacaaab", "bbabaccc"
    print(Solution().shortestCommonSupersequence(s1, s2))

# %%

结果

LCS: bcc

SCS: bbabaccacaaab

0 人点赞