【c++_containers】10分钟带你学会list

2024-01-22 18:40:58 浏览数 (3)

前言

链表作为一个像是用“链子”链接起来的容器,在数据的存储等方面极为便捷。虽然单链表单独在实际的应用中没用什么作用,但是当他可以结合其他结构,比如哈希桶之类的。不过今天学习的list其实是一个带头双向链表。

言归正传,让我们看一下list的特性。

一、list的特性

这里我还是推荐去cplusplus上阅读英文原文档。这里我总结了几条,

1. list 是可以在常数范围内 在任意位置进行插入和删除的序列式容器 ,并且该容器 可以前后双向迭代。 2. list 的底层是 双向链表结构 ,双向链表中每个 元素存储在互不相关的独立节点 中,在节点中通过指针指向其前一个元素和后一个元素。 3. list 与 forward_list 非常相似:最主要的不同在于 forward_list是单链表 ,只能朝前迭代,已让其更简单高效。 4. 与其他的序列式容器相比 (array , vector , deque) , list 通常 在任意位置进行插入、移除元素的执行效率更好。 5. 与其他序列式容器相比, list 和 forward_list 最大的缺陷是 不支持任意位置的随机访问 ,比如:要访问 list的第6 个元素,必须从已知的位置 ( 比如头部或者尾部 ) 迭代到该位置,在这段位置上迭代需要线性的时间开销;list 还需要一些 额外的空间, 以保存每个节点的相关联信息 ( 对于存储类型较小元素的大 list 来说这可能是一个重要的因素)。

其物理模型简化后如下图:

二、list的基本结构

前面我们提到list的底层是双向链表结构,双向链表中每个元素存储在互不相关的独立节点中,在节点中通过指针指向其前一个元素和后一个元素。那么他每个小结点的结构就变得清楚明了了。

代码语言:javascript复制
    template<class T>
	struct list_node
	{
		list_node<T>* _prev;
		list_node<T>* _next;
		T _val;

		list_node(const T& val = T())
			: _prev(nullptr)
			, _next(nullptr)
			, _val(val)
		{}			
	};

随后我们就可以写list的本体了

代码语言:javascript复制
    template<class T>
	class list
	{
		typedef list_node<T> Node;
    private:
		Node* _head;//哨兵位
		size_t _size;

	};

加一个表示size的数据是因为list的空间是不连续的。

三、list的基础构造

代码语言:javascript复制
        void empty_init()
		{
			_head = new Node;
			_head->_prev = _head;
			_head->_next = _head;

			_size = 0;
		}

		list()
		{
			empty_init();
		}

将empty经行再封装是因为这样的构造函数设计可以方便地创建空的list对象,并且避免了在创建list对象时必须显式地指定初始大小。同时,通过将初始化代码封装在empty_init()函数中,可以简化list类的实现,提高代码的可读性和可维护性。

四、list的插入与删除

与vector不同的是list的其他几种构造或多或少的依赖插入,而且哨兵位的初始化就可以继续后面的操作。当然插入和删除是list的重要点。

我们先从尾插写起,如图当插入一个节点时我们可以先新建一个新的节点,将值存入其中。然后将末尾(_head->_prev)的_next与newnode链接,然后将new的_prev与末尾链接,最后将头节点的_prev指向newnode,newnode的_next与_head链接。

代码语言:javascript复制
        void push_back(const T&x)
		{
			Node* newnode = new Node(x);
			Node* tail = _head->_prev;

			tail->_next = newnode;
			newnode->_prev = tail;
			newnode->_next = _head;
			_head->_prev = newnode;
			_size  ;

		}

而对于任意位置插入,其实和上面的逻辑相似。

代码语言:javascript复制
        //在pos之前插入,返回新插入元素位置
		iterator insert(iterator pos, const T& x)
		{
			Node* cur = pos._node;
			Node* prev = cur->_prev;
			Node* newnode = new Node(x);

			prev->_next = newnode;
			newnode->_next = cur;

			cur->_prev = newnode;
			newnode->_prev = prev;

			  _size;

			return newnode;
		}

与次对立的是list任意位置的删除。逻辑就是他反过来。

代码语言:javascript复制
        iterator erase(iterator pos)
		{
			assert(pos != end());

			Node* cur = pos._node;
			Node* prev = cur->_prev;
			Node* next = cur->_next;

			prev->_next = next;
			next->_prev = prev;

			delete cur;

			--_size;

			return next;
		}

但是list的删除面临着迭代器的失效前面说过,此处大家可将迭代器暂时理解成类似于指针,迭代器失效即迭代器所指向的节点的无效,即该节 点被删除了。因为list的底层结构为带头结点的双向循环链表,因此在list中进行插入时是不会导致list的迭代器失效的,只有在删除时才会失效,并且失效的只是指向被删除节点的迭代器,其他迭代器不会受到影响

比如下面的案例:

代码语言:javascript复制
void TestListIterator1()
{
 int array[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };
 list<int> l(array, array sizeof(array)/sizeof(array[0]));
 auto it = l.begin();
 while (it != l.end())
 {

 l.erase(it); 
   it;
 }
 // erase()函数执行后,it所指向的节点已被删除,因此it无效,在下一次使用it时,必须先给
其赋值

改正后:
void TestListIterator()
{
 int array[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 0 };
 list<int> l(array, array sizeof(array)/sizeof(array[0]));
 auto it = l.begin();
 while (it != l.end())
 {
 l.erase(it  ); // it = l.erase(it);
 }
}

当这两个比较泛型的插入与删除实现后其余代码就变得简单了。

代码语言:javascript复制
//拷贝构造        
        list(const list<T>& lt)
			//list(const list& lt)
		{
			empty_init();

			for (auto& e : lt)
			{
				push_back(e);
			}
		}
//析构函数
        ~list()
		{
			clear();

			delete _head;
			_head = nullptr;
		}
//头插
        void push_front(const T& x)
		{
			insert(begin(), x);
		}
//尾删
		void pop_back()
		{
			erase(--end());
		}
//头删
		void pop_front()
		{
			erase(begin());
		}
//清空
        void clear()
		{
			iterator it = begin();
			while (it != end())
			{
				it = erase(it);
			}

			_size = 0;
		}

五、list的迭代器

list的迭代器我们要实现的主要就是他的 与--问题,而 就是返回当前位置的_next, --就是返回当前位置的_prev。

代码语言:javascript复制
template<class T,class Ref,class Ptr>
	struct _list_iterator
	{
		typedef list_node<T> Node;
		typedef _list_iterator<T, Ref,Ptr> self;
		Node* _node;
		_list_iterator(Node* node)
			:_node(node)
		{}
		Ref& operator*()
		{
			return _node->_val;
		}
		Ptr operator->()
		{
			return &_node->_val;
		}
		self& operator  () 
		{
			_node = _node->_next;
			return *this;
		}
		self& operator  (int)//后置
		{
			self tmp(*this);
			_node = _node->_next;
			return tmp;
		}
		self& operator--()
		{
			_node = _node->_prev;
			return *this;
		}

		self operator--(int)
		{
			self tmp(*this);

			_node = _node->_prev;

			return tmp;
		}
		bool operator!=(const self & it)const
		{
			return _node != it._node;
		}
		 
		bool operator==(const self & it)const
		{
			return _node == it._node;
		}
	};

_list_iterator类模板的三个类型参数分别为T(元素类型)、Ref(引用类型)和Ptr(指针类型)。这个类包含一个成员变量_node,它是一个指向list_node对象的指针,用于存储当前迭代器所指向的节点。这里的Ref与Ptr主要用于分辨const与非const.

六、list与vector的对比

vector

list

底 层 结 构

动态顺序表,一段连续空间

带头结点的双向循环链表

随 机 访 问

支持随机访问,访问某个元素效率 O(1)

不支持随机访问,访问某个元素 效率 O(N)

插 入 和 删 除

任意位置插入和删除效率低,需要搬移元素,时间复杂 度为 O(N) ,插入时有可能需要增容,增容:开辟新空 间,拷贝元素,释放旧空间,导致效率更低

任意位置插入和删除效率高,不 需要搬移元素,时间复杂度为 O(1)

空 间 利 用 率

底层为连续空间,不容易造成内存碎片,空间利用率 高,缓存利用率高

底层节点动态开辟,小节点容易 造成内存碎片,空间利用率低, 缓存利用率低

迭 代 器

原生态指针

对原生态指针 ( 节点指针 ) 进行封装

迭 代 器 失 效

在插入元素时,要给所有的迭代器重新赋值,因为插入 元素有可能会导致重新扩容,致使原来迭代器失效,删 除时,当前迭代器需要重新赋值否则会失效

插入元素不会导致迭代器失效, 删除元素时,只会导致当前迭代 器失效,其他迭代器不受影响

使 用 场 景

需要高效存储,支持随机访问,不关心插入删除效率

大量插入和删除操作,不关心随 机访问

0 人点赞