深度剖析凭什么python中整型不会溢出

2024-01-30 14:28:39 浏览数 (1)

不溢出的整型的可行性

尽管在 C 语言中,整型所表示的大小是有范围的,但是 python 代码是保存到文本文件中的,也就是说,python代码中并不是一下子就转化成 C 语言的整型的,我们需要重新定义一种数据结构来表示和存储我们新的“整型”。 怎么来存储呢,既然我们要表示任意大小,那就得用动态的可变长的结构,显然,数组的形式能够胜任:

代码语言:javascript复制
[longintrepr.h]
struct _longobject {
    PyObject_VAR_HEAD
    int *ob_digit;
};

长整型的保存形式

长整型在python内部是用一个 int 数组( ob_digit[n] )保存值的. 待存储的数值的低位信息放于低位下标, 高位信息放于高下标.比如要保存 123456789 较大的数字,但我们的int只能保存3位(假设):

代码语言:javascript复制
ob_digit[0] = 789;
ob_digit[1] = 456;
ob_digit[2] = 123;

低索引保存的是地位,那么每个 int 元素保存多大的数合适?有同学会认为数组中每个int存放它的上限(2^31 - 1),这样表示大数时,数组长度更短,更省空间。但是,空间确实是更省了,但操作会代码麻烦,比方大数做乘积操作,由于元素之间存在乘法溢出问题,又得多考虑一种溢出的情况。 怎么来改进呢?在长整型的 ob_digit 中元素理论上可以保存的int类型有 32 位,但是我们只保存 15 位,这样元素之间的乘积就可以只用 int 类型保存即可, 结果做位移操作就能得到尾部和进位 carry 了,定义位移长度为 15:

代码语言:javascript复制
#define PyLong_SHIFT  15
#define PyLong_BASE ((digit)1 << PyLong_SHIFT)
#define PyLong_MASK ((digit)(PyLong_BASE - 1))

PyLong_MASK 也就是 0b111111111111111 ,通过与它做位运算 与 的操作就能得到低位数。

有了这种存放方式,在内存空间允许的情况下,我们就可以存放任意大小的数字了。

长整型的运算

加法与乘法运算都可以使用我们小学的竖式计算方法,例如对于加法运算:

为方便理解,表格展示的是数组中每个元素保存的是 3 位十进制数,计算结果保存在变量z中,那么 z 的数组最多只要 size_a 1 的空间(两个加数中数组较大的元素个数 1),因此对于加法运算,可以这样来处理:

代码语言:javascript复制
[longobject.c]
static PyLongObject * x_add(PyLongObject *a, PyLongObject *b) {
    int size_a = len(a), size_b = len(b);
    PyLongObject *z;
    int i;
    int carry = 0; // 进位

    // 确保a是两个加数中较大的一个
    if (size_a < size_b) {
        // 交换两个加数
        swap(a, b);
        swap(&size_a, &size_b);
    }

    z = _PyLong_New(size_a   1);  // 申请一个能容纳size_a 1个元素的长整型对象
    for (i = 0; i < size_b;   i) {
        carry  = a->ob_digit[i]   b->ob_digit[i];
        z->ob_digit[i] = carry & PyLong_MASK;   // 掩码
        carry >>= PyLong_SHIFT;                 // 移除低15位, 得到进位
    }
    for (; i < size_a;   i) {                   // 单独处理a中高位数字
        carry  = a->ob_digit[i];
        z->ob_digit[i] = carry & PyLong_MASK;
        carry >>= PyLong_SHIFT;
    }
    z->ob_digit[i] = carry;
    return long_normalize(z);                   // 整理元素个数

}

这部分的过程就是,先将两个加数中长度较长的作为第一个加数,再为用于保存结果的 z 申请空间,两个加数从数组从低位向高位计算,处理结果的进位,将结果的低 15 位赋值给 z 相应的位置。最后的 long_normalize(z) 是一个整理函数,因为我们 z 申请了 a_size 1 的空间,但不意味着 z 会全部用到,因此这个函数会做一些调整,去掉多余的空间,数组长度调整至正确的数量,若不方便理解,附录将给出更利于理解的python代码。 竖式计算不是按个位十位来计算的吗,为什么这边用整个元素? 竖式计算方法适用与任何进制的数字,我们可以这样来理解,这是一个 32768 (2的15次方) 进制的,那么就可以把数组索引为 0 的元素当做是 “个位”,索引 1 的元素当做是 “十位”。

乘法运算

乘法运算一样可以用竖式的计算方式,两个乘数相乘,存放结果的 z 的元素个数为 size_a size_b 即可:

这里需要主意的是,当乘数 b 用索引 i 的元素进行计算时,结果 z 也是从 i 索引开始保存。先创建 z 并初始化为 0,这 z 上做累加操作,加法运算则可以利用前面的 x_add 函数:

代码语言:javascript复制
// 为方便理解,会与cpython中源码部分稍有不同
static PyLongObject * x_mul(PyLongObject *a, PyLongObject *b)
{
    int size_a = len(a), size_b = len(b);
    PyLongObject *z = _PyLong_New(size_a   size_b);
    memset(z->ob_digit, 0, len(z) * sizeof(int)); // z 的数组清 0

    for (i = 0; i < size_b;   i) {
        int carry = 0;          // 用一个int保存元素之间的乘法结果
        int f = b->ob_digit[i]; // 当前乘数b的元素

        // 创建一个临时变量,保存当前元素的计算结果,用于累加
        PyLongObject *temp = _PyLong_New(size_a   size_b);
        memset(temp->ob_digit, 0, len(temp) * sizeof(int)); // temp 的数组清 0

        int pz = i; // 存放到临时变量的低位

        for (j = 0; j < size_a;   j) {
            carry = f * a[j]   carry;
            temp[pz] = carry & PyLong_MASK;  // 取低15位
            carry = carry >> PyLong_SHIFT;  // 保留进位
            pz   ;
        }
        if (carry){     //  处理进位
            carry  = temp[pz];
            temp[pz] = carry & PyLong_MASK;
            carry = carry >> PyLong_SHIFT;
        }
        if (carry){
            temp[pz]  = carry & PyLong_MASK;
        }
        temp = long_normalize(temp);
        z = x_add(z, temp);
    }

    return z

}

这大致就是乘法的处理过程,竖式乘法的复杂度是n^2,当数字非常大的时候(数组元素个数超过 70 个)时,python会选择性能更好,更高效的 Karatsuba multiplication 乘法运算方式,这种的算法复杂度是 3nlog3≈3n1.585

0 人点赞