Google Earth Engine——NOAA/GOES/16/和17/MCMIPF地球静止气象卫星云层和水分图像产品的(分辨率都是2公里)

2024-02-02 12:15:49 浏览数 (1)

https://www.goes.noaa.gov/ satellites are geostationary weather satellites run by NOAA.

The Cloud and Moisture Imagery products are all at 2km resolution. Bands 1-6 are reflective. The dimensionless "reflectance factor" quantity is normalized by the solar zenith angle. These bands support the characterization of clouds, vegetation, snow/ice, and aerosols. Bands 7-16 are emissive. The brightness temperature at the Top-Of-Atmosphere (TOA) is measured in Kelvin. These bands support the characterization of the surface, clouds, water vapor, ozone, volcanic ash, and dust based on emissive properties.

README

GOES卫星是由NOAA管理的地球静止气象卫星。

云层和水分图像产品的分辨率都是2公里。1-6波段是反射的。无尺寸的 "反射系数 "数量是以太阳天顶角为标准的。这些波段支持云、植被、雪/冰和气溶胶的特征。频段7-16是发射型的。大气层顶部(TOA)的亮度温度以开尔文测量。这些波段支持根据发射特性对地表、云层、水汽、臭氧、火山灰和灰尘进行定性。

阅读提示

Dataset Availability

2017-07-10T00:00:00 - 2021-09-30T00:00:00

Dataset Provider

NOAA

Collection Snippet

Copied

ee.ImageCollection("NOAA/GOES/16/MCMIPF")

Resolution

2000 meters

Bands Table

Name

Description

Min

Max

Units

Wavelength

CMI_C01

Visible - Blue Daytime aerosol over land, coastal water mapping.

0

1.3

Reflectance factor

0.45-0.49µm

DQF_C01

Data quality flags

0

4

CMI_C02

Visible - Red Daytime clouds, fog, insolation, winds

0

1.3

Reflectance factor

0.59-0.69µm

DQF_C02

Data quality flags

0

4

CMI_C03

Near-IR - Veggie Daytime vegetation, burn scar, aerosol over water, winds

0

1.3

Reflectance factor

0.846-0.885µm

DQF_C03

Data quality flags

0

4

CMI_C04

Near-IR - Cirrus Daytime cirrus cloud

0

1.3

Reflectance factor

1.371-1.386µm

DQF_C04

Data quality flags

0

4

CMI_C05

Near-IR - Snow/Ice Daytime cloud-top phase and particle size, snow

0

1.3

Reflectance factor

1.58-1.64µm

DQF_C05

Data quality flags

0

4

CMI_C06

Near IR - Cloud Particle Size Daytime land, cloud properties, particle size, vegetation, snow

0

1.3

Reflectance factor

2.225-2.275µm

DQF_C06

Data quality flags

0

4

CMI_C07

Infrared - Shortwave Window Brightness

197.31

411.86

K

3.80-4.00µm

DQF_C07

Data quality flags

0

4

CMI_C08

Infrared - Upper-level water vapor High-level atmospheric water vapor, winds, rainfall Brightness

138.05

311.06

K

5.77-6.6µm

DQF_C08

Data quality flags

0

4

CMI_C09

Infrared - Mid-level water vapor Mid-level atmospheric water vapor, winds, rainfall Brightness

137.7

311.08

K

6.75-7.15µm

DQF_C09

Data quality flags

0

4

CMI_C10

Infrared - Lower-level water vapor Lower-level water vapor, winds, and sulfur dioxide Brightness

126.91

331.2

K

7.24-7.44µm

DQF_C10

Data quality flags

0

4

CMI_C11

Infrared - Cloud-top phase Total water for stability, cloud phase, dust, sulfur dioxide, rainfall Brightness

127.69

341.3

K

8.3-8.7µm

DQF_C11

Data quality flags

0

4

CMI_C12

Infrared - Ozone Total ozone, turbulence, winds

117.49

311.06

K

9.42-9.8µm

DQF_C12

Data quality flags

0

4

CMI_C13

Infrared - "Clean" longwave window Surface and clouds Brightness

89.62

341.27

K

10.1-10.6µm

DQF_C13

Data quality flags

0

4

CMI_C14

Infrared - Longwave window Imagery, sea surface temperature, clouds, rainfall Brightness

96.19

341.28

K

10.8-11.6µm

DQF_C14

Data quality flags

0

4

CMI_C15

Infrared "Dirty" longwave Total water, volcanic ash, sea surface temperature Brightness

97.38

341.28

K

11.8-12.8µm

DQF_C15

Data quality flags

0

4

CMI_C16

Infrared - CO_2 longwave Air temperature, cloud heights Brightness

92.7

318.26

K

13.0-13.6µm

DQF_C16

Data quality flags

0

4

Class Table: DQF_C01

Value

Color

Color Value

Description

0

#ffffff

Good pixels

1

#ff00ff

Conditionally usable pixels

2

#0000ff

Out of range pixels

3

#00ffff

No value pixels

4

#ffff00

Focal plane temperature threshold exceeded

Class Table: DQF_C02

Value

Color

Color Value

Description

0

#ffffff

Good pixels

1

#ff00ff

Conditionally usable pixels

2

#0000ff

Out of range pixels

3

#00ffff

No value pixels

4

#ffff00

Focal plane temperature threshold exceeded

Class Table: DQF_C03

Value

Color

Color Value

Description

0

#ffffff

Good pixels

1

#ff00ff

Conditionally usable pixels

2

#0000ff

Out of range pixels

3

#00ffff

No value pixels

4

#ffff00

Focal plane temperature threshold exceeded

Class Table: DQF_C04

Value

Color

Color Value

Description

0

#ffffff

Good pixels

1

#ff00ff

Conditionally usable pixels

2

#0000ff

Out of range pixels

3

#00ffff

No value pixels

4

#ffff00

Focal plane temperature threshold exceeded

Class Table: DQF_C05

Value

Color

Color Value

Description

0

#ffffff

Good pixels

1

#ff00ff

Conditionally usable pixels

2

#0000ff

Out of range pixels

3

#00ffff

No value pixels

4

#ffff00

Focal plane temperature threshold exceeded

Class Table: DQF_C06

Value

Color

Color Value

Description

0

#ffffff

Good pixels

1

#ff00ff

Conditionally usable pixels

2

#0000ff

Out of range pixels

3

#00ffff

No value pixels

4

#ffff00

Focal plane temperature threshold exceeded

Class Table: DQF_C07

Value

Color

Color Value

Description

0

#ffffff

Good pixels

1

#ff00ff

Conditionally usable pixels

2

#0000ff

Out of range pixels

3

#00ffff

No value pixels

4

#ffff00

Focal plane temperature threshold exceeded

Class Table: DQF_C08

Value

Color

Color Value

Description

0

#ffffff

Good pixels

1

#ff00ff

Conditionally usable pixels

2

#0000ff

Out of range pixels

3

#00ffff

No value pixels

4

#ffff00

Focal plane temperature threshold exceeded

Class Table: DQF_C09

Value

Color

Color Value

Description

0

#ffffff

Good pixels

1

#ff00ff

Conditionally usable pixels

2

#0000ff

Out of range pixels

3

#00ffff

No value pixels

4

#ffff00

Focal plane temperature threshold exceeded

Class Table: DQF_C10

Value

Color

Color Value

Description

0

#ffffff

Good pixels

1

#ff00ff

Conditionally usable pixels

2

#0000ff

Out of range pixels

3

#00ffff

No value pixels

4

#ffff00

Focal plane temperature threshold exceeded

Class Table: DQF_C11

Value

Color

Color Value

Description

0

#ffffff

Good pixels

1

#ff00ff

Conditionally usable pixels

2

#0000ff

Out of range pixels

3

#00ffff

No value pixels

4

#ffff00

Focal plane temperature threshold exceeded

Class Table: DQF_C12

Value

Color

Color Value

Description

0

#ffffff

Good pixels

1

#ff00ff

Conditionally usable pixels

2

#0000ff

Out of range pixels

3

#00ffff

No value pixels

4

#ffff00

Focal plane temperature threshold exceeded

Class Table: DQF_C13

Value

Color

Color Value

Description

0

#ffffff

Good pixels

1

#ff00ff

Conditionally usable pixels

2

#0000ff

Out of range pixels

3

#00ffff

No value pixels

4

#ffff00

Focal plane temperature threshold exceeded

Class Table: DQF_C14

Value

Color

Color Value

Description

0

#ffffff

Good pixels

1

#ff00ff

Conditionally usable pixels

2

#0000ff

Out of range pixels

3

#00ffff

No value pixels

4

#ffff00

Focal plane temperature threshold exceeded

Class Table: DQF_C15

Value

Color

Color Value

Description

0

#ffffff

Good pixels

1

#ff00ff

Conditionally usable pixels

2

#0000ff

Out of range pixels

3

#00ffff

No value pixels

4

#ffff00

Focal plane temperature threshold exceeded

Class Table: DQF_C16

Value

Color

Color Value

Description

0

#ffffff

Good pixels

1

#ff00ff

Conditionally usable pixels

2

#0000ff

Out of range pixels

3

#00ffff

No value pixels

4

#ffff00

Focal plane temperature threshold exceeded

影像属性:

Name

Type

Description

CMI_C01_offset

Double

Offset to add to scaled CMI_C01 values

CMI_C01_scale

Double

Scale to multiply with raw CMI_C01 values

CMI_C02_offset

Double

Offset to add to scaled CMI_C02 values

CMI_C02_scale

Double

Scale to multiply with raw CMI_C02 values

CMI_C03_offset

Double

Offset to add to scaled CMI_C03 values

CMI_C03_scale

Double

Scale to multiply with raw CMI_C03 values

CMI_C04_offset

Double

Offset to add to scaled CMI_C04 values

CMI_C04_scale

Double

Scale to multiply with raw CMI_C04 values

CMI_C05_offset

Double

Offset to add to scaled CMI_C05 values

CMI_C05_scale

Double

Scale to multiply with raw CMI_C05 values

CMI_C06_offset

Double

Offset to add to scaled CMI_C06 values

CMI_C06_scale

Double

Scale to multiply with raw CMI_C06 values

CMI_C07_offset

Double

Offset to add to scaled CMI_C07 values

CMI_C07_scale

Double

Scale to multiply with raw CMI_C07 values

CMI_C08_offset

Double

Offset to add to scaled CMI_C08 values

CMI_C08_scale

Double

Scale to multiply with raw CMI_C08 values

CMI_C09_offset

Double

Offset to add to scaled CMI_C09 values

CMI_C09_scale

Double

Scale to multiply with raw CMI_C09 values

CMI_C10_offset

Double

Offset to add to scaled CMI_C10 values

CMI_C10_scale

Double

Scale to multiply with raw CMI_C10 values

CMI_C11_offset

Double

Offset to add to scaled CMI_C11 values

CMI_C11_scale

Double

Scale to multiply with raw CMI_C11 values

CMI_C12_offset

Double

Offset to add to scaled CMI_C12 values

CMI_C12_scale

Double

Scale to multiply with raw CMI_C12 values

CMI_C13_offset

Double

Offset to add to scaled CMI_C13 values

CMI_C13_scale

Double

Scale to multiply with raw CMI_C13 values

CMI_C14_offset

Double

Offset to add to scaled CMI_C14 values

CMI_C14_scale

Double

Scale to multiply with raw CMI_C14 values

CMI_C15_offset

Double

Offset to add to scaled CMI_C15 values

CMI_C15_scale

Double

Scale to multiply with raw CMI_C15 values

CMI_C16_offset

Double

Offset to add to scaled CMI_C16 values

CMI_C16_scale

Double

Scale to multiply with raw CMI_C16 values

使用说明:

NOAA data, information, and products, regardless of the method of delivery, are not subject to copyright and carry no restrictions on their subsequent use by the public. Once obtained, they may be put to any lawful use.

数据引用:

Bah, Gunshor, Schmit, Generation of GOES-16 True Color Imagery without a Green Band, 2018. doi:10.1029/2018EA000379

Product User Guide (PUG) Volume 5, L2 Products.

Schmit, T., Griffith, P., et al, (2016), A closer look at the ABI on the GOES-R series, Bull. Amer. Meteor. Soc., 98(4), 681-698.

代码:

代码语言:javascript复制
// Band aliases.
var BLUE = 'CMI_C01';
var RED = 'CMI_C02';
var VEGGIE = 'CMI_C03';
var GREEN = 'GREEN';
// 16 pairs of CMI and DQF followed by Bah 2018 synthetic green.
// Band numbers in the EE asset, 0-based.
var NUM_BANDS = 33;
// Skipping the interleaved DQF bands.
var BLUE_BAND_INDEX = (1 - 1) * 2;
var RED_BAND_INDEX = (2 - 1) * 2;
var VEGGIE_BAND_INDEX = (3 - 1) * 2;
var GREEN_BAND_INDEX = NUM_BANDS - 1;

// Visualization range for GOES RGB.
var GOES_MIN = 0.0;
var GOES_MAX = 0.7;  // Alternatively 1.0 or 1.3.
var GAMMA = 1.3;

var goesRgbViz = {
  bands: [RED, GREEN, BLUE],
  min: GOES_MIN,
  max: GOES_MAX,
  gamma: GAMMA
};

var applyScaleAndOffset = function(image) {
  image = ee.Image(image);
  var bands = new Array(NUM_BANDS);
  for (var i = 1; i < 17; i  ) {
    var bandName = 'CMI_C'   (100   i   '').slice(-2);
    var offset = ee.Number(image.get(bandName   '_offset'));
    var scale =  ee.Number(image.get(bandName   '_scale'));
    bands[(i-1) * 2] = image.select(bandName).multiply(scale).add(offset);

    var dqfName = 'DQF_C'   (100   i   '').slice(-2);
    bands[(i-1) * 2   1] = image.select(dqfName);
  }

  // Bah, Gunshor, Schmit, Generation of GOES-16 True Color Imagery without a
  // Green Band, 2018. https://doi.org/10.1029/2018EA000379
  // Green = 0.45 * Red   0.10 * NIR   0.45 * Blue
  var green1 = bands[RED_BAND_INDEX].multiply(0.45);
  var green2 = bands[VEGGIE_BAND_INDEX].multiply(0.10);
  var green3 = bands[BLUE_BAND_INDEX].multiply(0.45);
  var green = green1.add(green2).add(green3);
  bands[GREEN_BAND_INDEX] = green.rename(GREEN);

  return ee.Image(ee.Image(bands).copyProperties(image, image.propertyNames()));
};

var collection = 'NOAA/GOES/16/MCMIPF/';
var imageName = '2020210184019900000';
var assetId = collection   imageName;
var image = applyScaleAndOffset(assetId);
Map.addLayer(image, goesRgbViz);

代码:

代码语言:javascript复制
// Band aliases.
var BLUE = 'CMI_C01';
var RED = 'CMI_C02';
var VEGGIE = 'CMI_C03';
var GREEN = 'GREEN';
// 16 pairs of CMI and DQF followed by Bah 2018 synthetic green.
// Band numbers in the EE asset, 0-based.
var NUM_BANDS = 33;
// Skipping the interleaved DQF bands.
var BLUE_BAND_INDEX = (1 - 1) * 2;
var RED_BAND_INDEX = (2 - 1) * 2;
var VEGGIE_BAND_INDEX = (3 - 1) * 2;
var GREEN_BAND_INDEX = NUM_BANDS - 1;

// Visualization range for GOES RGB.
var GOES_MIN = 0.0;
var GOES_MAX = 0.7;  // Alternatively 1.0 or 1.3.
var GAMMA = 1.3;

var goesRgbViz = {
  bands: [RED, GREEN, BLUE],
  min: GOES_MIN,
  max: GOES_MAX,
  gamma: GAMMA
};

var applyScaleAndOffset = function(image) {
  image = ee.Image(image);
  var bands = new Array(NUM_BANDS);
  for (var i = 1; i < 17; i  ) {
    var bandName = 'CMI_C'   (100   i   '').slice(-2);
    var offset = ee.Number(image.get(bandName   '_offset'));
    var scale =  ee.Number(image.get(bandName   '_scale'));
    bands[(i-1) * 2] = image.select(bandName).multiply(scale).add(offset);

    var dqfName = 'DQF_C'   (100   i   '').slice(-2);
    bands[(i-1) * 2   1] = image.select(dqfName);
  }

  // Bah, Gunshor, Schmit, Generation of GOES-16 True Color Imagery without a
  // Green Band, 2018. https://doi.org/10.1029/2018EA000379
  // Green = 0.45 * Red   0.10 * NIR   0.45 * Blue
  var green1 = bands[RED_BAND_INDEX].multiply(0.45);
  var green2 = bands[VEGGIE_BAND_INDEX].multiply(0.10);
  var green3 = bands[BLUE_BAND_INDEX].multiply(0.45);
  var green = green1.add(green2).add(green3);
  bands[GREEN_BAND_INDEX] = green.rename(GREEN);

  return ee.Image(ee.Image(bands).copyProperties(image, image.propertyNames()));
};

var collection = 'NOAA/GOES/17/MCMIPC/';
var imageName = '2020211190617600000';
var assetId = collection   imageName;
var image = applyScaleAndOffset(assetId);
Map.addLayer(image, goesRgbViz);

0 人点赞