Google Earth Engine——美国人口普查局的TIGER数据集包含美国各州主要法律部门的2018年边界。在大多数州,这些实体被称为 “县“。在路易斯安那州,这些州被称为 “教区“。

2024-02-02 12:23:01 浏览数 (2)

The United States Census Bureau TIGER dataset contains the 2018 boundaries for primary legal divisions of US states. In most states, these entities are termed "counties". In Louisiana, these divisions are known as "parishes".

Alaska has governmental entities called "boroughs" which fill a similar governmental role to counties, but in some areas those governmental responsibilities are handled directly by the state and sometimes by a city. For Alaska, county equivalent entities thus include

  1. organized boroughs,
  2. combined city and borough entities (e.g. Juneau),
  3. municipalities, and
  4. census areas.

The census areas are delineated cooperatively for statistical purposes by the State of Alaska and the Census Bureau.

In four states (Maryland, Missouri, Nevada, and Virginia), there are one or more incorporated places that are independent of any county organization and thus constitute primary divisions of their states. These incorporated places are known as independent cities and are treated as county-equivalent entities for purposes of data presentation.

The District of Columbia and Guam have no primary divisions and each area is considered a county-equivalent entity for purposes of data presentation. The Census Bureau treats the following entities as equivalents of counties for purposes of data presentation: municipios in Puerto Rico, districts and islands in America Samoa, municipalities in the Commonwealth of the Northern Mariana Islands, and islands in the U.S. Virgin Islands.

For full technical details on all TIGER 2018 products, see the TIGER technical documentation.

美国人口普查局的TIGER数据集包含美国各州主要法律部门的2018年边界。在大多数州,这些实体被称为 "县"。在路易斯安那州,这些部门被称为 "教区"。

阿拉斯加有被称为 "区 "的政府实体,它们扮演着与县类似的政府角色,但在一些地区,这些政府职责由州政府直接处理,有时由一个城市处理。因此,对于阿拉斯加来说,相当于县的实体包括

有组织的区。 市和区的合并实体(如朱诺)。 市政当局,以及 人口普查区。 人口普查区是由阿拉斯加州和人口普查局为统计目的合作划定的。

在四个州(马里兰州、密苏里州、内华达州和弗吉尼亚州),有一个或多个独立于任何县级组织的地方,因此构成其州的主要划分。这些地方被称为独立的城市,并被视为等同于县的实体,以便提供数据。

哥伦比亚特区和关岛没有主要的部门,每个地区都被认为是一个县级的实体,以便于数据显示。人口普查局将以下实体视为等同于县的数据:波多黎各的市,美属萨摩亚的区和岛,北马里亚纳群岛联邦的市,以及美属维尔京群岛的岛。

关于所有TIGER 2018产品的全部技术细节,请参见TIGER技术文件。

Dataset Availability

2018-01-01T00:00:00 - 2019-01-01T00:00:00

Dataset Provider

United States Census Bureau

Collection Snippet

ee.FeatureCollection("TIGER/2018/Counties")

Name

Type

Description

ALAND

Double

Land area

AWATER

Double

Water area

CBSAFP

String

Metropolitan statistical area/micropolitan statistical area code

CLASSFP

String

FIPS class code

COUNTYFP

String

County FIPS code

COUNTYNS

String

County GNIS code

CSAFP

String

Combined statistical area code

FUNCSTAT

String

Functional Status

GEOID

String

County identifier; a concatenation of state FIPS code and county FIPS code

INTPTLAT

String

Internal point latitude

INTPTLON

String

Internal point longitude

LSAD

String

Legal/statistical area description for the county

METDIVFP

String

Metropolitan division code

MTFCC

String

MAF/TIGER feature class code (=G4020)

NAME

String

County name

NAMELSAD

String

Name and the translated legal/statistical area description for the county

STATEFP

String

State FIPS code

数据使用:

The U.S. Census Bureau offers some of its public data in machine-readable format via an Application Programming Interface (API). All of the content, documentation, code and related materials made available to you through the API are subject to these terms and conditions.

引用:

For the creation of any reports, publications, new data sets, derived products, or services resulting from the data set, users should cite the US Census Bureau.

代码:

代码语言:javascript复制
var dataset = ee.FeatureCollection('TIGER/2018/Counties');
var visParams = {
  palette: ['purple', 'blue', 'green', 'yellow', 'orange', 'red'],
  min: 0,
  max: 50,
  opacity: 0.8,
};

// Turn the strings into numbers
dataset = dataset.map(function (f) {
  return f.set('STATEFP', ee.Number.parse(f.get('STATEFP')));
});

var image = ee.Image().float().paint(dataset, 'STATEFP');
var countyOutlines = ee.Image().float().paint({
  featureCollection: dataset,
  color: 'black',
  width: 1
});

Map.setCenter(-99.844, 37.649, 5);
Map.addLayer(image, visParams, 'TIGER/2018/Counties');
Map.addLayer(countyOutlines, {}, 'county outlines');
Map.addLayer(dataset, null, 'for Inspector', false);

0 人点赞