【极数系列】Flink集成KafkaSink & 实时输出数据(11)

2024-03-04 17:41:27 浏览数 (1)

01 引言

代码语言:javascript复制
KafkaSink 可将数据流写入一个或多个 Kafka topic
实战源码地址,一键下载可用:https://gitee.com/shawsongyue/aurora.git
模块:aurora_flink_connector_kafka
主类:KafkaSinkStreamingJob

02 连接器依赖

2.1 kafka连接器依赖

代码语言:javascript复制
        <!--kafka依赖 start-->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-connector-kafka</artifactId>
            <version>3.0.2-1.18</version>
        </dependency>
        <!--kafka依赖 end-->

2.2 base基础依赖

代码语言:javascript复制
     若是不引入该依赖,项目启动直接报错:Exception in thread "main" java.lang.NoClassDefFoundError: org/apache/flink/connector/base/source/reader/RecordEmitter
代码语言:javascript复制
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-connector-base</artifactId>
            <version>1.18.0</version>
        </dependency>

03 使用方法

Kafka sink 提供了构建类来创建 KafkaSink 的实例

代码语言:javascript复制
DataStream<String> stream = ...;
        
KafkaSink<String> sink = KafkaSink.<String>builder()
        .setBootstrapServers(brokers)
        .setRecordSerializer(KafkaRecordSerializationSchema.builder()
            .setTopic("topic-name")
            .setValueSerializationSchema(new SimpleStringSchema())
            .build()
        )
        .setDeliveryGuarantee(DeliveryGuarantee.AT_LEAST_ONCE)
        .build();
        
stream.sinkTo(sink);

以下属性在构建 KafkaSink 时是必须指定的:
Bootstrap servers, setBootstrapServers(String)
消息序列化器(Serializer), setRecordSerializer(KafkaRecordSerializationSchema)
如果使用DeliveryGuarantee.EXACTLY_ONCE 的语义保证,则需要使用 setTransactionalIdPrefix(String)

04 序列化器

  1. 构建时需要提供 KafkaRecordSerializationSchema 来将输入数据转换为 Kafka 的 ProducerRecord。Flink 提供了 schema 构建器 以提供一些通用的组件,例如消息键(key)/消息体(value)序列化、topic 选择、消息分区,同样也可以通过实现对应的接口来进行更丰富的控制。
  2. 其中消息体(value)序列化方法和 topic 的选择方法是必须指定的,此外也可以通过 setKafkaKeySerializer(Serializer)setKafkaValueSerializer(Serializer) 来使用 Kafka 提供而非 Flink 提供的序列化器
代码语言:javascript复制
KafkaRecordSerializationSchema.builder()
    .setTopicSelector((element) -> {<your-topic-selection-logic>})
    .setValueSerializationSchema(new SimpleStringSchema())
    .setKeySerializationSchema(new SimpleStringSchema())
    .setPartitioner(new FlinkFixedPartitioner())
    .build();

05 容错恢复

代码语言:javascript复制
`KafkaSink` 总共支持三种不同的语义保证(`DeliveryGuarantee`)。对于 `DeliveryGuarantee.AT_LEAST_ONCE` 和 `DeliveryGuarantee.EXACTLY_ONCE`,Flink checkpoint 必须启用。默认情况下 `KafkaSink` 使用 `DeliveryGuarantee.NONE`。 以下是对不同语义保证的解释:
  • DeliveryGuarantee.NONE 不提供任何保证:消息有可能会因 Kafka broker 的原因发生丢失或因 Flink 的故障发生重复。
  • DeliveryGuarantee.AT_LEAST_ONCE: sink 在 checkpoint 时会等待 Kafka 缓冲区中的数据全部被 Kafka producer 确认。消息不会因 Kafka broker 端发生的事件而丢失,但可能会在 Flink 重启时重复,因为 Flink 会重新处理旧数据。
  • DeliveryGuarantee.EXACTLY_ONCE: 该模式下,Kafka sink 会将所有数据通过在 checkpoint 时提交的事务写入。因此,如果 consumer 只读取已提交的数据(参见 Kafka consumer 配置 isolation.level),在 Flink 发生重启时不会发生数据重复。然而这会使数据在 checkpoint 完成时才会可见,因此请按需调整 checkpoint 的间隔。请确认事务 ID 的前缀(transactionIdPrefix)对不同的应用是唯一的,以保证不同作业的事务 不会互相影响!此外,强烈建议将 Kafka 的事务超时时间调整至远大于 checkpoint 最大间隔 最大重启时间,否则 Kafka 对未提交事务的过期处理会导致数据丢失。

05 指标监控

Kafka sink 会在不同的范围(Scope)中汇报下列指标。

范围

指标

用户变量

描述

类型

算子

currentSendTime

n/a

发送最近一条数据的耗时。该指标反映最后一条数据的瞬时值。

Gauge

06 项目源码实战

6.1 包结构

6.2 pom.xml依赖

代码语言:javascript复制
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>com.xsy</groupId>
    <artifactId>aurora_flink_connector_kafka</artifactId>
    <version>1.0-SNAPSHOT</version>

    <!--属性设置-->
    <properties>
        <!--java_JDK版本-->
        <java.version>11</java.version>
        <!--maven打包插件-->
        <maven.plugin.version>3.8.1</maven.plugin.version>
        <!--编译编码UTF-8-->
        <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
        <!--输出报告编码UTF-8-->
        <project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>
        <!--json数据格式处理工具-->
        <fastjson.version>1.2.75</fastjson.version>
        <!--log4j版本-->
        <log4j.version>2.17.1</log4j.version>
        <!--flink版本-->
        <flink.version>1.18.0</flink.version>
        <!--scala版本-->
        <scala.binary.version>2.11</scala.binary.version>
    </properties>

    <!--通用依赖-->
    <dependencies>

        <!-- json -->
        <dependency>
            <groupId>com.alibaba</groupId>
            <artifactId>fastjson</artifactId>
            <version>${fastjson.version}</version>
        </dependency>

        <!-- https://mvnrepository.com/artifact/org.apache.flink/flink-java -->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-java</artifactId>
            <version>${flink.version}</version>
        </dependency>

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-streaming-scala_2.12</artifactId>
            <version>${flink.version}</version>
        </dependency>

        <!-- https://mvnrepository.com/artifact/org.apache.flink/flink-clients -->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-clients</artifactId>
            <version>${flink.version}</version>
        </dependency>


        <!--================================集成外部依赖==========================================-->
        <!--集成日志框架 start-->
        <dependency>
            <groupId>org.apache.logging.log4j</groupId>
            <artifactId>log4j-slf4j-impl</artifactId>
            <version>${log4j.version}</version>
        </dependency>

        <dependency>
            <groupId>org.apache.logging.log4j</groupId>
            <artifactId>log4j-api</artifactId>
            <version>${log4j.version}</version>
        </dependency>

        <dependency>
            <groupId>org.apache.logging.log4j</groupId>
            <artifactId>log4j-core</artifactId>
            <version>${log4j.version}</version>
        </dependency>

        <!--集成日志框架 end-->

        <!--kafka依赖 start-->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-connector-kafka</artifactId>
            <version>3.0.2-1.18</version>
        </dependency>
        <!--kafka依赖 end-->

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-connector-base</artifactId>
            <version>1.18.0</version>
        </dependency>
    </dependencies>

    <!--编译打包-->
    <build>
        <finalName>${project.name}</finalName>
        <!--资源文件打包-->
        <resources>
            <resource>
                <directory>src/main/resources</directory>
            </resource>
            <resource>
                <directory>src/main/java</directory>
                <includes>
                    <include>**/*.xml</include>
                </includes>
            </resource>
        </resources>

        <plugins>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-shade-plugin</artifactId>
                <version>3.1.1</version>
                <executions>
                    <execution>
                        <phase>package</phase>
                        <goals>
                            <goal>shade</goal>
                        </goals>
                        <configuration>
                            <artifactSet>
                                <excludes>
                                    <exclude>org.apache.flink:force-shading</exclude>
                                    <exclude>org.google.code.flindbugs:jar305</exclude>
                                    <exclude>org.slf4j:*</exclude>
                                    <excluder>org.apache.logging.log4j:*</excluder>
                                </excludes>
                            </artifactSet>
                            <filters>
                                <filter>
                                    <artifact>*:*</artifact>
                                    <excludes>
                                        <exclude>META-INF/*.SF</exclude>
                                        <exclude>META-INF/*.DSA</exclude>
                                        <exclude>META-INF/*.RSA</exclude>
                                    </excludes>
                                </filter>
                            </filters>
                            <transformers>
                                <transformer implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">
                                    <mainClass>org.aurora.KafkaStreamingJob</mainClass>
                                </transformer>
                            </transformers>
                        </configuration>
                    </execution>
                </executions>
            </plugin>
        </plugins>

        <!--插件统一管理-->
        <pluginManagement>
            <plugins>
                <!--maven打包插件-->
                <plugin>
                    <groupId>org.springframework.boot</groupId>
                    <artifactId>spring-boot-maven-plugin</artifactId>
                    <version>${spring.boot.version}</version>
                    <configuration>
                        <fork>true</fork>
                        <finalName>${project.build.finalName}</finalName>
                    </configuration>
                    <executions>
                        <execution>
                            <goals>
                                <goal>repackage</goal>
                            </goals>
                        </execution>
                    </executions>
                </plugin>

                <!--编译打包插件-->
                <plugin>
                    <artifactId>maven-compiler-plugin</artifactId>
                    <version>${maven.plugin.version}</version>
                    <configuration>
                        <source>${java.version}</source>
                        <target>${java.version}</target>
                        <encoding>UTF-8</encoding>
                        <compilerArgs>
                            <arg>-parameters</arg>
                        </compilerArgs>
                    </configuration>
                </plugin>
            </plugins>
        </pluginManagement>
    </build>

    <!--配置Maven项目中需要使用的远程仓库-->
    <repositories>
        <repository>
            <id>aliyun-repos</id>
            <url>https://maven.aliyun.com/nexus/content/groups/public/</url>
            <snapshots>
                <enabled>false</enabled>
            </snapshots>
        </repository>
    </repositories>

    <!--用来配置maven插件的远程仓库-->
    <pluginRepositories>
        <pluginRepository>
            <id>aliyun-plugin</id>
            <url>https://maven.aliyun.com/nexus/content/groups/public/</url>
            <snapshots>
                <enabled>false</enabled>
            </snapshots>
        </pluginRepository>
    </pluginRepositories>

</project>

6.3 配置文件

(1)application.properties

代码语言:javascript复制
#kafka集群地址
kafka.bootstrapServers=localhost:9092
#kafka主题
kafka.topic=topic_a
#kafka消费者组
kafka.group=aurora_group

(2)log4j2.properties

代码语言:javascript复制
rootLogger.level=INFO
rootLogger.appenderRef.console.ref=ConsoleAppender
appender.console.name=ConsoleAppender
appender.console.type=CONSOLE
appender.console.layout.type=PatternLayout
appender.console.layout.pattern=%d{HH:mm:ss,SSS} %-5p %-60c %x - %m%n
log.file=D:\tmprootLogger.level=INFO
rootLogger.appenderRef.console.ref=ConsoleAppender
appender.console.name=ConsoleAppender
appender.console.type=CONSOLE
appender.console.layout.type=PatternLayout
appender.console.layout.pattern=%d{HH:mm:ss,SSS} %-5p %-60c %x - %m%n
log.file=D:\tmp

6.4 创建sink作业

代码语言:javascript复制
package com.aurora;

import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.api.java.utils.ParameterTool;
import org.apache.flink.connector.base.DeliveryGuarantee;
import org.apache.flink.connector.kafka.sink.KafkaRecordSerializationSchema;
import org.apache.flink.connector.kafka.sink.KafkaSink;
import org.apache.flink.connector.kafka.source.KafkaSource;
import org.apache.flink.connector.kafka.source.KafkaSourceBuilder;
import org.apache.flink.connector.kafka.source.enumerator.initializer.OffsetsInitializer;
import org.apache.flink.runtime.state.StateBackend;
import org.apache.flink.runtime.state.filesystem.FsStateBackend;
import org.apache.flink.streaming.api.CheckpointingMode;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.CheckpointConfig;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.util.Collector;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import java.util.ArrayList;

/**
 * @author 浅夏的猫
 * @description kafka 连接器使用demo作业
 * @datetime 22:21 2024/2/1
 */
public class KafkaSinkStreamingJob {

    private static final Logger logger = LoggerFactory.getLogger(KafkaSinkStreamingJob.class);

    public static void main(String[] args) throws Exception {

        //===============1.获取参数==============================
        //定义文件路径
        String propertiesFilePath = "E:\project\aurora_dev\aurora_flink_connector_kafka\src\main\resources\application.properties";
        //方式一:直接使用内置工具类
        ParameterTool paramsMap = ParameterTool.fromPropertiesFile(propertiesFilePath);

        //================2.初始化kafka参数==============================
        String bootstrapServers = paramsMap.get("kafka.bootstrapServers");
        String topic = paramsMap.get("kafka.topic");

        KafkaSink<String> sink = KafkaSink.<String>builder()
                //设置kafka地址
                .setBootstrapServers(bootstrapServers)
                //设置消息序列号方式
                .setRecordSerializer(KafkaRecordSerializationSchema.builder()
                        .setTopic(topic)
                        .setValueSerializationSchema(new SimpleStringSchema())
                        .build()
                )
                //至少一次
                .setDeliveryGuarantee(DeliveryGuarantee.AT_LEAST_ONCE)
                .build();


        //=================4.创建Flink运行环境=================
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        ArrayList<String> listData = new ArrayList<>();
        listData.add("test");
        listData.add("java");
        listData.add("c  ");
        DataStreamSource<String> dataStreamSource = env.fromCollection(listData);

        //=================5.数据简单处理======================
        SingleOutputStreamOperator<String> flatMap = dataStreamSource.flatMap(new FlatMapFunction<String, String>() {
            @Override
            public void flatMap(String record, Collector<String> collector) throws Exception {
                logger.info("正在处理kafka数据:{}", record);
                collector.collect(record);
            }
        });

        //数据输出算子
        flatMap.sinkTo(sink);

        //=================6.启动服务=========================================
        //开启flink的checkpoint功能:每隔1000ms启动一个检查点(设置checkpoint的声明周期)
        env.enableCheckpointing(1000);
        //checkpoint高级选项设置
        //设置checkpoint的模式为exactly-once(这也是默认值)
        env.getCheckpointConfig().setCheckpointingMode(CheckpointingMode.EXACTLY_ONCE);
        //确保检查点之间至少有500ms间隔(即checkpoint的最小间隔)
        env.getCheckpointConfig().setMinPauseBetweenCheckpoints(500);
        //确保检查必须在1min之内完成,否则就会被丢弃掉(即checkpoint的超时时间)
        env.getCheckpointConfig().setCheckpointTimeout(60000);
        //同一时间只允许操作一个检查点
        env.getCheckpointConfig().setMaxConcurrentCheckpoints(1);
        //程序即使被cancel后,也会保留checkpoint数据,以便根据实际需要恢复到指定的checkpoint
        env.getCheckpointConfig().enableExternalizedCheckpoints(CheckpointConfig.ExternalizedCheckpointCleanup.RETAIN_ON_CANCELLATION);
        //设置statebackend,指定state和checkpoint的数据存储位置(checkpoint的数据必须得有一个可以持久化存储的地方)
        env.getCheckpointConfig().setCheckpointStorage("file:///E:/flink/checkPoint");
        env.execute();
    }

}

0 人点赞