一、安装加载R包 1.安装加载 代码语言: R
复制 options("repos" = c(CRAN="https://mirrors.tuna.tsinghua.edu.cn/CRAN/"))
options(BioC_mirror="https://mirrors.ustc.edu.cn/bioc/")
install.packages("dplyr")
library(dplyr)
2.简化 代码语言: R
复制 test <- iris[c(1:2,51:52,101:102),]
二、dplyr五个基础函数 1.mutate(),新增列 代码语言: R
复制 > mutate(test, new = Sepal.Length * Sepal.Width)
Sepal.Length Sepal.Width
1 5.1 3.5
2 4.9 3.0
51 7.0 3.2
52 6.4 3.2
101 6.3 3.3
102 5.8 2.7
Petal.Length Petal.Width
1 1.4 0.2
2 1.4 0.2
51 4.7 1.4
52 4.5 1.5
101 6.0 2.5
102 5.1 1.9
Species new
1 setosa 17.85
2 setosa 14.70
51 versicolor 22.40
52 versicolor 20.48
101 virginica 20.79
102 virginica 15.66
2.select(),按列筛选 代码语言: R
复制 # 按列号筛选
> select(test,1)
Sepal.Length
1 5.1
2 4.9
51 7.0
52 6.4
101 6.3
102 5.8
> select(test,c(1,5))
Sepal.Length Species
1 5.1 setosa
2 4.9 setosa
51 7.0 versicolor
52 6.4 versicolor
101 6.3 virginica
102 5.8 virginica
> select(test,Sepal.Length)
Sepal.Length
1 5.1
2 4.9
51 7.0
52 6.4
101 6.3
102 5.8
# 按列名筛选
> select(test, Petal.Length, Petal.Width)
Petal.Length Petal.Width
1 1.4 0.2
2 1.4 0.2
51 4.7 1.4
52 4.5 1.5
101 6.0 2.5
102 5.1 1.9
> vars <- c("Petal.Length", "Petal.Width")
> select(test, one_of(vars))
Petal.Length Petal.Width
1 1.4 0.2
2 1.4 0.2
51 4.7 1.4
52 4.5 1.5
101 6.0 2.5
102 5.1 1.9
3.filter()筛选行 代码语言: R
复制 > filter(test, Species == "setosa")
Sepal.Length Sepal.Width
1 5.1 3.5
2 4.9 3.0
Petal.Length Petal.Width
1 1.4 0.2
2 1.4 0.2
Species
1 setosa
2 setosa
> filter(test, Species == "setosa"&Sepal.Length > 5 )
Sepal.Length Sepal.Width
1 5.1 3.5
Petal.Length Petal.Width
1 1.4 0.2
Species
1 setosa
> filter(test, Species %in% c("setosa","versicolor"))
Sepal.Length Sepal.Width
1 5.1 3.5
2 4.9 3.0
3 7.0 3.2
4 6.4 3.2
Petal.Length Petal.Width
1 1.4 0.2
2 1.4 0.2
3 4.7 1.4
4 4.5 1.5
Species
1 setosa
2 setosa
3 versicolor
4 versicolor
4.arrange(),按某1列或某几列对整个表格进行排序 代码语言: R> arrange(test, Sepal.Length)
复制 Sepal.Length Sepal.Width
1 4.9 3.0
2 5.1 3.5
3 5.8 2.7
4 6.3 3.3
5 6.4 3.2
6 7.0 3.2
Petal.Length Petal.Width
1 1.4 0.2
2 1.4 0.2
3 5.1 1.9
4 6.0 2.5
5 4.5 1.5
6 4.7 1.4
Species
1 setosa
2 setosa
3 virginica
4 virginica
5 versicolor
6 versicolor
> arrange(test, desc(Sepal.Length))
Sepal.Length Sepal.Width
1 7.0 3.2
2 6.4 3.2
3 6.3 3.3
4 5.8 2.7
5 5.1 3.5
6 4.9 3.0
Petal.Length Petal.Width
1 4.7 1.4
2 4.5 1.5
3 6.0 2.5
4 5.1 1.9
5 1.4 0.2
6 1.4 0.2
Species
1 versicolor
2 versicolor
3 virginica
4 virginica
5 setosa
6 setosa
5.summarise():汇总 代码语言: R
复制 > summarise(test, mean(Sepal.Length), sd(Sepal.Length))
mean(Sepal.Length)
1 5.916667
sd(Sepal.Length)
1 0.8084965
> group_by(test, Species)
# A tibble: 6 × 5
# Groups: Species [3]
Sepal.Length Sepal.Width
<dbl> <dbl>
1 5.1 3.5
2 4.9 3
3 7 3.2
4 6.4 3.2
5 6.3 3.3
6 5.8 2.7
# ℹ 3 more variables:
# Petal.Length <dbl>,
# Petal.Width <dbl>,
# Species <fct>
> summarise(group_by(test, Species),mean(Sepal.Length), sd(Sepal.Length))
# A tibble: 3 × 3
Species `mean(Sepal.Length)`
<fct> <dbl>
1 setosa 5
2 versicol… 6.7
3 virginica 6.05
# ℹ 1 more variable:
# `sd(Sepal.Length)` <dbl>
三、dplyr两个实用技能 1:管道操作 %>% (cmd/ctr shift M) 代码语言: R
复制 > test %>%
group_by(Species) %>%
summarise(mean(Sepal.Length), sd(Sepal.Length))
# A tibble: 3 × 3
Species `mean(Sepal.Length)`
<fct> <dbl>
1 setosa 5
2 versicol… 6.7
3 virginica 6.05
# ℹ 1 more variable:
# `sd(Sepal.Length)` <dbl>
2:count统计某列的unique值 代码语言: R
复制 > count(test,Species)
Species n
1 setosa 2
2 versicolor 2
3 virginica 2
四、dplyr处理关系数据 将表连接 代码语言: R
复制 > test1 <- data.frame(x = c('b','e','f','x'),
z = c("A","B","C",'D'))
> test2 <- data.frame(x = c('a','b','c','d','e','f'),
y = c(1,2,3,4,5,6))
> View(test2)
> View(test1)
> View(test)
> View(test)
1.內连inner_join,取交集 代码语言: R
复制 > inner_join(test1, test2, by = "x")
x z y
1 b A 2
2 e B 5
3 f C 6
2.左连left_join 代码语言: R
复制 > left_join(test1, test2, by = 'x')
x z y
1 b A 2
2 e B 5
3 f C 6
4 x D NA
> left_join(test2, test1, by = 'x')
x y z
1 a 1 <NA>
2 b 2 A
3 c 3 <NA>
4 d 4 <NA>
5 e 5 B
6 f 6 C
3.全连full_join 代码语言: R
复制 > full_join( test1, test2, by = 'x')
x z y
1 b A 2
2 e B 5
3 f C 6
4 x D NA
5 a <NA> 1
6 c <NA> 3
7 d <NA> 4
4.半连接:返回能够与y表匹配的x表所有记录semi_join 代码语言: R
复制 > semi_join(x = test1, y = test2, by = 'x')
x z
1 b A
2 e B
3 f C
5.反连接:返回无法与y表匹配的x表的所记录anti_join 代码语言: R
复制 > anti_join(x = test2, y = test1, by = 'x')
x y
1 a 1
2 c 3
3 d 4
6.简单合并 代码语言: R
复制 > test1 <- data.frame(x = c(1,2,3,4), y = c(10,20,30,40))
> test2 <- data.frame(x = c(5,6), y = c(50,60))
> test3 <- data.frame(z = c(100,200,300,400))
> bind_rows(test1, test2)
x y
1 1 10
2 2 20
3 3 30
4 4 40
5 5 50
6 6 60
> bind_cols(test1, test3)
x y z
1 1 10 100
2 2 20 200
3 3 30 300
4 4 40 400
感jio最近要做的事好多,要忙不过来了,思维导图来个简易版 奋力肝ing 学习R包