大语言模型的开发利器langchain

2023-06-28 09:56:41 浏览数 (1)

简介

最近随着chatgpt的兴起,人工智能和大语言模型又再次进入了人们的视野,不同的是这一次像是来真的,各大公司都在拼命投入,希望能在未来的AI赛道上占有一席之地。因为AI需要大规模的算力,尤其是对于大语言模型来说。大规模的算力就意味着需要大量金钱的投入。那么对于小公司或者个人来说是不是什么都做不了呢?

当然不是,虽然小公司或者个人不能开发底层的大语言模型,但是我们可以在大语言模型之上进行应用开发,这应该就是我们现在能做到的。

今天给大家介绍一个大语言模型的开发框架langchain,有了它,在AI的世界,你可以如虎添翼。

什么是langchain

简单来说,langchain是一个基于大语言模型只上的开发框架,有了他,我们就可以轻松在各种大模型之上进行实际应用的开发。

langchain的主要特点有两个,第一点就是组件化。langchain提供了各种封装好的组件供我们使用,大大缩短了我们开发的时间。

第二点就是提供了工具链,可以组装各种组件,从而实现更加复杂的功能。

langchain的安装

废话不多说,我们来看下langchain是如何安装的。

AI时代大家一定要学一下python,至于为什么要学习python呢?因为其他语言都不好使……

langchain实际上是python的一个开发包,所以可以通过pip或者conda两种方式来安装:

pip安装

代码语言:javascript复制
pip install langchain

conda安装

代码语言:javascript复制
conda install langchain -c conda-forge

默认情况下上面的安装方式是最简单的安装,还有很多和langchain集成的modules并没有安装进来,如果你希望安装common LLM providers的依赖模块,那么可以通过下面的命令:

代码语言:javascript复制
pip install langchain[llms]

如果你想安装所有的模块,那么可以使用下面的命令:

代码语言:javascript复制
pip install langchain[all]

因为langchain是开源软件,所以你也可以通过源代码来安装,下载好源代码之后,通过下面的命令安装即可:

代码语言:javascript复制
pip install -e .

langchain快速使用

下面我们以几个具体的例子来讲解一下langchain如何使用的。

因为langchain只是一个大语言模型上的开发框架,它的所有的能力都是依赖于大语言模型的,所以在使用langchain之前,我们需要一个大语言模型,最简单同时也是最强大的大语言模型就是openai的chatgpt了。

接下来我们就以接入openai为例子进行讲解。

当然langchain也可以接入其他的大语言模型框架,后面的系列教程中我们会详细讲解。

要使用openai,必须先注册一个openai的账号,然后拿到openai的api key。

具体的注册流程这里就不讲了。大家可以自行参考网络上的各种教程。

有了api key之后,我们需要配置一下环境变量:

代码语言:javascript复制
export OPENAI_API_KEY="..."

然后安装openai的包:

代码语言:javascript复制
pip install openai

接下来就可以愉快的使用openai提供的各种功能了。

当然,如果你不想在环境变量中配置openai的key,我们也可以在OpenAI的构造函数中传入openai_api_key:

代码语言:javascript复制
from langchain.llms import OpenAI

llm = OpenAI(openai_api_key="...")

构建应用

有了上面的准备工作,接下来我们就可以开始使用langchain了。

当然,最最基础的一个应用就是跟大模型交互了,比如跟openai交互,我们可以让openai给我们写首诗:

代码语言:javascript复制
>>> from langchain.llms import OpenAI
>>> llm = OpenAI(temperature=0.9)
>>> llm.predict("请以古龙的口吻,写首关于春天诗")

春天来了,万物复苏,
终于迎来了一个新的时辰,
草儿花儿抬起头,
喜迎新绿与绚丽的颜色。

山林里,小草发芽,
河畔边,花儿香烈,
这让我们感到心旷神怡,
这真是一个美好的世界。

春天来了,列位朋友,
请喜迎这样一个新时辰,
不要抱怨什么,
享受春的温暖与欣慰。

虽然写出来了,但是我觉得写的一般般吧。

但是这不重要,我们知道了如何通过langchain来调用openai的大模型,这个才是最重要的。

聊天模式

上面我们调用LLM使用用的是”text in, text out”的模型。

虽然聊天模式也是基于LLM,但是他更进了一步,因为他保存了会话的上下问题,所以在对话上更加智能化。

在代码上,传入的就不是文本了,而是message对象。

在langchain中,目前支持下面几种消息类型:AIMessage, HumanMessage, SystemMessage 和 ChatMessage。

在绝大多数情况下,我们只需要用到AIMessage, HumanMessage, SystemMessage即可。

下面是使用的代码例子:

代码语言:javascript复制
from langchain.chat_models import ChatOpenAI
from langchain.schema import (
    AIMessage,
    HumanMessage,
    SystemMessage
)

chat = ChatOpenAI(temperature=0)
chat.predict_messages([HumanMessage(content="请以古龙的口吻,写首关于春天诗")])

那么聊天模式和LLM模式有什么不一样呢?

大家可以看到,聊天模式调用的是predict_messages接口, 而LLM模式调用的是predict接口。

事实上聊天模式底层还是使用的是LLM,为了方便大家的使用,你也可以直接使用chat.predict方法来进行LLM方式的调用,如下所示:

代码语言:javascript复制
chat.predict("请以古龙的口吻,写首关于春天诗")

Prompt的模板

开发过LLM应用的人都知道,在LLM中Prompt是非常重要的,一个好的Prompt直接决定了这个应用的质量。

但是Prompt肯定需要结合用户的输入和我们自己做的一些限定来结合使用。

这时候就需要用到Prompt的模板功能了。 我们可以在系统中设置好模板,用户只需要填充模板中的特定消息即可。

在LLM模式中,可以使用PromptTemplates,这样来写:

代码语言:javascript复制
from langchain.prompts import PromptTemplate

prompt = PromptTemplate.from_template("请帮忙我详细描述一下这个物体,这个物体的名字是: {object}?")
prompt.format(object="猫")

最后生成的结果如下:

代码语言:javascript复制
请帮忙我详细描述一下这个物体,这个物体的名字是: 猫

如果是在chat models中,代码会复杂一点点,但是逻辑实际上是一样的。 在chat models中,需要用到几种MessagePromptTemplate,比如:ChatPromptTemplate,SystemMessagePromptTemplate和HumanMessagePromptTemplate。

我们具体来看下如何使用:

代码语言:javascript复制
from langchain.prompts.chat import (
    ChatPromptTemplate,
    SystemMessagePromptTemplate,
    HumanMessagePromptTemplate,
)

template = "现在,你的角色是{your_role}, 请根据你的角色回答后续的问题."
system_message_prompt = SystemMessagePromptTemplate.from_template(template)
human_template = "{text}"
human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)

chat_prompt = ChatPromptTemplate.from_messages([system_message_prompt, human_message_prompt])

chat_prompt.format_messages(your_role="教师", text="世界上最远的地方是哪里?")

对应的输出如下:

代码语言:javascript复制
[
    SystemMessage(content="现在,你的角色是教师, 请根据你的角色回答后续的问题.", additional_kwargs={}),
    HumanMessage(content="世界上最远的地方是哪里?")
]

非常完美。

Chains

langchain还有一个非常有用的功能就是Chains,他可以把多种不同的功能结合起来。

比如上面我们用到了LLM,还用到了Prompt的模板,那么我们可以用Chains把他们结合起来:

代码语言:javascript复制
from langchain.chains import LLMChain

chain = LLMChain(llm=llm, prompt=prompt)
chain.run("猫")

当然,也可以结合chat使用:

代码语言:javascript复制
from langchain import LLMChain
from langchain.chat_models import ChatOpenAI
from langchain.prompts.chat import (
    ChatPromptTemplate,
    SystemMessagePromptTemplate,
    HumanMessagePromptTemplate,
)

chat = ChatOpenAI(temperature=0)

template = "现在,你的角色是{your_role}, 请根据你的角色回答后续的问题."
system_message_prompt = SystemMessagePromptTemplate.from_template(template)
human_template = "{text}"
human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)
chat_prompt = ChatPromptTemplate.from_messages([system_message_prompt, human_message_prompt])

chain = LLMChain(llm=chat, prompt=chat_prompt)
chain.run(your_role="教师", text="世界上最远的地方是哪里?")

Agents

什么是agents? 从字面意义上看,Agents就是代理。

事实上langchain中的Agents就是代理的意思。

比如我们现在需要向openai询问昨天的天气,但是openai本身只是一个大模型,它并不知道实时的信息。但是通过agents就可以先进行一次判断,看看这个问题是交给大模型处理合适,还是交给搜索引擎来查询比较合适。

这就是agents的作用。

agents利用LLM来判断需要怎么处理这个任务,并且以什么样的顺序来处理这个任务。

但是使用agents是要有些条件的,首先你这个LLM模型必须支持agent,这样才能进行后续的工作。

其次是需要挑选合适的工具来进行你想要做的事情,比如:Google Search, Database lookup, Python REPL等等。

最后就是需要指定支持的agent的名字,这样LLM才知道到底需要进行哪种action。

下面是一个使用SerpAPI结合openai来进行搜索的例子:

代码语言:javascript复制
from langchain.agents import AgentType, initialize_agent, load_tools
from langchain.llms import OpenAI

# The language model we're going to use to control the agent.
llm = OpenAI(temperature=0)

# The tools we'll give the Agent access to. Note that the 'llm-math' tool uses an LLM, so we need to pass that in.
tools = load_tools(["serpapi", "llm-math"], llm=llm)

# Finally, let's initialize an agent with the tools, the language model, and the type of agent we want to use.
agent = initialize_agent(tools, llm, agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION, verbose=True)

# Let's test it out!
agent.run("What was the high temperature in SF yesterday in Fahrenheit? What is that number raised to the .023 power?")

agent比较复杂,功能也很强大,后续我们会详细讲解。

Memory

最后要讲解的langchain的一个功能就是Memory。

因为很多时候,我们的应用应该是一个有状态的,也就是说应用需要知道你之前做了什么,这样才可以给用户提供更好的服务。

但是之前我们将的LLM或者chain都是无状态的。

所以langchain提供了一个Memory的功能,可以把之前的输入输出保存起来,方便后续的使用。

总结

有了langchain的各种工具,现在你就可以快速开发一个属于你自己的LLM应用啦。

0 人点赞