PyTorch 学习 -1- 张量

2023-07-13 14:09:54 浏览数 (2)

本文介绍张量 (Tensor) 的基本知识 。

参考 深入浅出PyTorch ,系统补齐基础知识。

本节目录

  • 张量的简介
  • PyTorch如何创建张量
  • PyTorch中张量的操作
  • PyTorch中张量的广播机制

张量

几何代数中定义的张量是基于向量和矩阵的推广,比如我们可以将标量视为零阶张量,矢量可以视为一阶张量,矩阵就是二阶张量。

张量维度

代表含义

0维张量

代表的是标量(数字)

1维张量

代表的是向量

2维张量

代表的是矩阵

3维张量

时间序列数据 股价 文本数据 单张彩色图片(RGB)

张量是现代机器学习的基础。它的核心是一个数据容器,多数情况下,它包含数字,有时候它也包含字符串,但这种情况比较少。因此可以把它想象成一个数字的水桶。

在机器学习工作中,我们经常要处理不止一张图片或一篇文档——我们要处理一个集合。我们可能有10,000 张郁金香的图片,这意味着,我们将用到4D张量:

代码语言:javascript复制
(batch_size, width, height, channel) = 4D

在PyTorch中, torch.Tensor 是存储和变换数据的主要工具。如果你之前用过NumPy,你会发现 Tensor 和NumPy的多维数组非常类似。然而,Tensor 提供GPU计算和自动求梯度等更多功能,这些使 Tensor 这一数据类型更加适合深度学习。

创建张量

在接下来的内容中,我们将介绍几种常见的创建tensor的方法。

随机初始化矩阵

我们可以通过torch.rand()的方法,构造一个随机初始化的矩阵:

代码语言:javascript复制
import torch
x = torch.rand(4, 3) 
print(x)
tensor([[0.7569, 0.4281, 0.4722],
        [0.9513, 0.5168, 0.1659],
        [0.4493, 0.2846, 0.4363],
        [0.5043, 0.9637, 0.1469]])
全0矩阵的构建

我们可以通过torch.zeros()构造一个矩阵全为 0,并且通过dtype设置数据类型为 long。除此以外,我们还可以通过 torch.zero_()torch.zeros_like() 将现有矩阵转换为全0矩阵.

代码语言:javascript复制
import torch
x = torch.zeros(4, 3, dtype=torch.long)
print(x)
tensor([[0, 0, 0],
        [0, 0, 0],
        [0, 0, 0],
        [0, 0, 0]])
张量的构建

我们可以通过torch.tensor()直接使用数据,构造一个张量:

代码语言:javascript复制
import torch
x = torch.tensor([5.5, 3]) 
print(x)
tensor([5.5000, 3.0000])

基于已经存在的 tensor,创建一个 tensor :

代码语言:javascript复制
x = x.new_ones(4, 3, dtype=torch.double) 
# 创建一个新的全1矩阵tensor,返回的tensor默认具有相同的torch.dtype和torch.device
# 也可以像之前的写法 x = torch.ones(4, 3, dtype=torch.double)
print(x)
x = torch.randn_like(x, dtype=torch.float)
# 重置数据类型
print(x)
# 结果会有一样的size
# 获取它的维度信息
print(x.size())
print(x.shape)
tensor([[1., 1., 1.],
        [1., 1., 1.],
        [1., 1., 1.],
        [1., 1., 1.]], dtype=torch.float64)
tensor([[ 2.7311, -0.0720,  0.2497],
        [-2.3141,  0.0666, -0.5934],
        [ 1.5253,  1.0336,  1.3859],
        [ 1.3806, -0.6965, -1.2255]])
torch.Size([4, 3])
torch.Size([4, 3])

返回的torch.Size其实是一个tuple,⽀持所有tuple的操作。我们可以使用索引操作取得张量的长、宽等数据维度。

操作张量

在接下来的内容中,我们将介绍几种常见的张量的操作方法:

加法操作
代码语言:javascript复制
import torch
# 方式1
y = torch.rand(4, 3) 
print(x   y)

# 方式2
print(torch.add(x, y))

# 方式3 in-place,原值修改
y.add_(x) 
print(y)
tensor([[ 2.8977,  0.6581,  0.5856],
        [-1.3604,  0.1656, -0.0823],
        [ 2.1387,  1.7959,  1.5275],
        [ 2.2427, -0.3100, -0.4826]])
tensor([[ 2.8977,  0.6581,  0.5856],
        [-1.3604,  0.1656, -0.0823],
        [ 2.1387,  1.7959,  1.5275],
        [ 2.2427, -0.3100, -0.4826]])
tensor([[ 2.8977,  0.6581,  0.5856],
        [-1.3604,  0.1656, -0.0823],
        [ 2.1387,  1.7959,  1.5275],
        [ 2.2427, -0.3100, -0.4826]])

索引操作

类似于 numpy

需要注意的是:索引出来的结果与原数据共享内存,修改一个,另一个会跟着修改。如果不想修改,可以考虑使用copy()等方法

代码语言:javascript复制
import torch
x = torch.rand(4,3)
# 取第二列
print(x[:, 1]) 
tensor([-0.0720,  0.0666,  1.0336, -0.6965])
y = x[0,:]
y  = 1
print(y)
print(x[0, :]) # 源tensor也被改了了
tensor([3.7311, 0.9280, 1.2497])
tensor([3.7311, 0.9280, 1.2497])
维度变换

张量的维度变换常见的方法有torch.view()torch.reshape(),下面我们将介绍第一中方法torch.view()

代码语言:javascript复制
x = torch.randn(4, 4)
y = x.view(16)
z = x.view(-1, 8) # -1是指这一维的维数由其他维度决定
print(x.size(), y.size(), z.size())
torch.Size([4, 4]) torch.Size([16]) torch.Size([2, 8])

: torch.view() 返回的新tensor与源tensor共享内存(其实是同一个tensor),更改其中的一个,另外一个也会跟着改变。(顾名思义,view()仅仅是改变了对这个张量的观察角度)

代码语言:javascript复制
x  = 1
print(x)
print(y) # 也加了了1
tensor([[ 1.3019,  0.3762,  1.2397,  1.3998],
        [ 0.6891,  1.3651,  1.1891, -0.6744],
        [ 0.3490,  1.8377,  1.6456,  0.8403],
        [-0.8259,  2.5454,  1.2474,  0.7884]])
tensor([ 1.3019,  0.3762,  1.2397,  1.3998,  0.6891,  1.3651,  1.1891, -0.6744,
         0.3490,  1.8377,  1.6456,  0.8403, -0.8259,  2.5454,  1.2474,  0.7884])

上面我们说过 torch.view() 会改变原始张量,但是很多情况下,我们希望原始张量和变换后的张量互相不影响。为了使创建的张量和原始张量不共享内存,我们需要使用第二种方法torch.reshape(), 同样可以改变张量的形状,但是此函数并不能保证返回的是其拷贝值,所以官方不推荐使用。推荐的方法是我们先用 clone() 创造一个张量副本然后再使用 torch.view()进行函数维度变换 。

:使用 clone() 还有一个好处是会被记录在计算图中,即梯度回传到副本时也会传到源 Tensor

取值操作

如果我们有一个元素 tensor ,我们可以使用 .item() 来获得这个 value,而不获得其他性质:

代码语言:javascript复制
import torch
x = torch.randn(1) 
print(type(x)) 
print(type(x.item()))
<class 'torch.Tensor'>
<class 'float'>

PyTorch中的 Tensor 支持超过一百种操作,包括转置、索引、切片、数学运算、线性代数、随机数等等,具体使用方法可参考官方文档。

广播机制

当对两个形状不同的 Tensor 按元素运算时,可能会触发广播(broadcasting)机制:先适当复制元素使这两个 Tensor 形状相同后再按元素运算。

代码语言:javascript复制
x = torch.arange(1, 3).view(1, 2)
print(x)
y = torch.arange(1, 4).view(3, 1)
print(y)
print(x   y)
tensor([[1, 2]])
tensor([[1],
        [2],
        [3]])
tensor([[2, 3],
        [3, 4],
        [4, 5]])

由于x和y分别是1行2列和3行1列的矩阵,如果要计算x y,那么x中第一行的2个元素被广播 (复制)到了第二行和第三行,⽽y中第⼀列的3个元素被广播(复制)到了第二列。如此,就可以对2个3行2列的矩阵按元素相加。

参考资料

  • https://datawhalechina.github.io/thorough-pytorch/第二章/index.html
  • https://github.com/datawhalechina/thorough-pytorch
  • http://fancyerii.github.io/books/pytorch/
  • https://pytorch.org/docs/stable/nn.html

文章链接: https://cloud.tencent.com/developer/article/2302052

0 人点赞