FlashAttention算法简介

2023-07-25 14:44:05 浏览数 (1)

1. Motivation

不同硬件模块之间的带宽和存储空间有明显差异,例如下图中左边的三角图,最顶端的是GPU种的SRAM,它的容量非常小但是带宽非常大,以A100 GPU为例,它有108个流式多核处理器,每个处理器上的片上SRAM大小只有192KB,因此A100总共的SRAM大小是192KBtimes(108)approx20MB,但是其吞吐量能高达19TB/s。而A100 GPU HBM(High Bandwidth Memory也就是我们常说的GPU显存大小)大小在40GB~80GB左右,但是带宽只与1.5TB/s。 下图给出了标准的注意力机制的实现流程,可以看到因为HBM的大小更大,我们平时写pytorch代码的时候最常用到的就是HBM,所以对于HBM的读写操作非常频繁,而SRAM利用率反而不高。

FlashAttention的主要动机就是希望把SRAM利用起来,但是难点就在于SRAM太小了,一个普通的矩阵乘法都放不下去。FlashAttention的解决思路就是将计算模块进行分解,拆成一个个小的计算任务。

2. Softmax Tiling

在介绍具体的计算算法前,我们首先需要了解一下Softmax Tiling。

  1. 数值稳定: Softmax包含指数函数,所以为了避免数值溢出问题,可以将每个元素都减去最大值,如下图示,最后计算结果和原来的Softmax是一致的。

2. 分块计算Softmax

因为Softmax都是按行计算的,所以我们考虑一行切分成两部分的情况,即原本的一行数据

xinmathbb{R}^{2B}=[x^{(1)},x^{(2)}]

可以看到计算不同块的f(x)值时,乘上的系数是不同的,但是最后化简后的结果都是指数函数减去了整行的最大值。以

x^{(1)}

为例,

begin{align} e^{m(x^{(1)})-m(x)}f(x^{(1)})&=e^{m(x^{(1)})-m(x)}[e^{x^{(1)}_1-m(x^{(1)})},...,e^{x^{(1)}_B-m(x^{(1)})}] notag \ &=[e^{x^{(1)}_1-m(x)},...,e^{x^{(1)}_B-m(x)}] end{align}

3. FlashAttention算法流程

为方便理解,下图将FlashAttention的计算流程可视化出来了,简单理解就是每一次只计算一个block的值,通过多轮的双for循环完成整个注意力的计算。

下面是FlashAttention的代码实现,参考自https://github.com/shreyansh26/FlashAttention-PyTorch/tree/master

代码语言:javascript复制
import torch
import torch.nn as nn
import numpy as np
import sys
import time
from einops import rearrange

BLOCK_SIZE = 1024
NEG_INF = -1e10 # -infinity
EPSILON = 1e-10

def normal_attention_causal(Q, K, V):
    scale = 1 / np.sqrt(Q.shape[-1])
    Q = Q * scale
    QKt = torch.einsum('... i d, ... j d -> ... i j', Q, K)

    Q_LEN = Q.shape[2]
    K_LEN = K.shape[2]

    causal_mask = torch.triu(torch.ones((Q_LEN, K_LEN)), K_LEN - Q_LEN   1)
    causal_mask = causal_mask.to(device='cuda')
    QKt = torch.where(causal_mask > 0, NEG_INF, QKt)

    attn = nn.functional.softmax(QKt, dim=-1)
    return attn @ V

def flash_attention_causal_forward(Q, K, V):
    O = torch.zeros_like(Q, requires_grad=True)
    l = torch.zeros(Q.shape[:-1])[...,None]
    m = torch.ones(Q.shape[:-1])[...,None] * NEG_INF

    O = O.to(device='cuda')
    l = l.to(device='cuda')
    m = m.to(device='cuda')

    Q_BLOCK_SIZE = min(BLOCK_SIZE, Q.shape[-1])
    KV_BLOCK_SIZE = BLOCK_SIZE

    Q_BLOCKS = torch.split(Q, Q_BLOCK_SIZE, dim=2)
    K_BLOCKS = torch.split(K, KV_BLOCK_SIZE, dim=2)
    V_BLOCKS = torch.split(V, KV_BLOCK_SIZE, dim=2)

    Tr = len(Q_BLOCKS)
    Tc = len(K_BLOCKS)

    O_BLOCKS = list(torch.split(O, Q_BLOCK_SIZE, dim=2))
    l_BLOCKS = list(torch.split(l, Q_BLOCK_SIZE, dim=2))
    m_BLOCKS = list(torch.split(m, Q_BLOCK_SIZE, dim=2))

    Q_LEN = Q.shape[2]
    K_LEN = K.shape[2]

    Q_RANGE = torch.arange(Q_LEN)[:,None]   (K_LEN - Q_LEN)
    K_RANGE = torch.arange(K_LEN)[None,:]

    Q_RANGE = Q_RANGE.to(device='cuda')
    K_RANGE = K_RANGE.to(device='cuda')

    Q_RANGE_BLOCKS = torch.split(Q_RANGE, Q_BLOCK_SIZE, dim=0)
    K_RANGE_BLOCKS = torch.split(K_RANGE, KV_BLOCK_SIZE, dim=1)

    for j in range(Tc):
        Kj = K_BLOCKS[j]
        Vj = V_BLOCKS[j]
        K_RANGE_BLOCKSj = K_RANGE_BLOCKS[j]

        for i in range(Tr):
            Qi = Q_BLOCKS[i]
            Oi = O_BLOCKS[i]
            li = l_BLOCKS[i]
            mi = m_BLOCKS[i]
            Q_RANGE_BLOCKSi = Q_RANGE_BLOCKS[i]

            scale = 1 / np.sqrt(Q.shape[-1])
            Qi_scaled  = Qi * scale

            S_ij = torch.einsum('... i d, ... j d -> ... i j', Qi_scaled, Kj)
            
            # Masking
            causal_mask = Q_RANGE_BLOCKSi >= K_RANGE_BLOCKSj
            S_ij = torch.where(causal_mask > 0, S_ij, NEG_INF)

            m_block_ij, _ = torch.max(S_ij, dim=-1, keepdims=True)
            P_ij = torch.exp(S_ij - m_block_ij)
            # Masking
            P_ij = torch.where(causal_mask > 0, P_ij, 0)

            l_block_ij = torch.sum(P_ij, dim=-1, keepdims=True)   EPSILON

            P_ij_Vj = torch.einsum('... i j, ... j d -> ... i d', P_ij, Vj)

            mi_new = torch.maximum(m_block_ij, mi)
            li_new = torch.exp(mi - mi_new) * li   torch.exp(m_block_ij - mi_new) * l_block_ij
            
            O_BLOCKS[i] = (li/li_new) * torch.exp(mi - mi_new) * Oi   (torch.exp(m_block_ij - mi_new) / li_new) * P_ij_Vj
            l_BLOCKS[i] = li_new
            m_BLOCKS[i] = mi_new
        
    O = torch.cat(O_BLOCKS, dim=2)
    l = torch.cat(l_BLOCKS, dim=2)
    m = torch.cat(m_BLOCKS, dim=2)
    return O, l, m

def flash_attention_causal_backward(Q, K, V, O, l, m, dO):
    Q_BLOCK_SIZE = min(BLOCK_SIZE, Q.shape[-1])
    KV_BLOCK_SIZE = BLOCK_SIZE

    Q_BLOCKS = torch.split(Q, Q_BLOCK_SIZE, dim=2)
    K_BLOCKS = torch.split(K, KV_BLOCK_SIZE, dim=2)
    V_BLOCKS = torch.split(V, KV_BLOCK_SIZE, dim=2)

    Tr = len(Q_BLOCKS)
    Tc = len(K_BLOCKS)

    O_BLOCKS = list(torch.split(O, Q_BLOCK_SIZE, dim=2))
    dO_BLOCKS = list(torch.split(dO, Q_BLOCK_SIZE, dim=2))
    l_BLOCKS = list(torch.split(l, Q_BLOCK_SIZE, dim=2))
    m_BLOCKS = list(torch.split(m, Q_BLOCK_SIZE, dim=2))

    dQ = torch.zeros_like(Q, requires_grad=True).to(device='cuda')
    dK = torch.zeros_like(K, requires_grad=True).to(device='cuda')
    dV = torch.zeros_like(V, requires_grad=True).to(device='cuda')

    dQ_BLOCKS = list(torch.split(dQ, Q_BLOCK_SIZE, dim=2))
    dK_BLOCKS = list(torch.split(dK, KV_BLOCK_SIZE, dim=2))
    dV_BLOCKS = list(torch.split(dV, KV_BLOCK_SIZE, dim=2))

    Q_LEN = Q.shape[2]
    K_LEN = K.shape[2]

    Q_RANGE = torch.arange(Q_LEN)[:,None]   (K_LEN - Q_LEN)
    K_RANGE = torch.arange(K_LEN)[None,:]

    Q_RANGE = Q_RANGE.to(device='cuda')
    K_RANGE = K_RANGE.to(device='cuda')

    Q_RANGE_BLOCKS = torch.split(Q_RANGE, Q_BLOCK_SIZE, dim=0)
    K_RANGE_BLOCKS = torch.split(K_RANGE, KV_BLOCK_SIZE, dim=1)

    for j in range(Tc):
        Kj = K_BLOCKS[j]
        Vj = V_BLOCKS[j]
        K_RANGE_BLOCKSj = K_RANGE_BLOCKS[j]

        dKj_block = torch.zeros_like(dK_BLOCKS[j], requires_grad=True).to(device='cuda')
        dVj_block = torch.zeros_like(dV_BLOCKS[j], requires_grad=True).to(device='cuda')

        for i in range(Tr):
            Qi = Q_BLOCKS[i]
            Oi = O_BLOCKS[i]
            dOi = dO_BLOCKS[i]
            li = l_BLOCKS[i]
            mi = m_BLOCKS[i]
            Q_RANGE_BLOCKSi = Q_RANGE_BLOCKS[i]

            scale = 1 / np.sqrt(Q.shape[-1])
            Qi_scaled  = Qi * scale

            S_ij = torch.einsum('... i d, ... j d -> ... i j', Qi_scaled, Kj)
            
            # Masking
            causal_mask = Q_RANGE_BLOCKSi >= K_RANGE_BLOCKSj
            S_ij = torch.where(causal_mask > 0, S_ij, NEG_INF)

            P_ij = (1/li) * torch.exp(S_ij - mi)
            # Masking
            P_ij = torch.where(causal_mask > 0, P_ij, 0)

            dVj_block = dVj_block   torch.einsum('... r c, ... r d -> ... c d', P_ij, dOi)
            dP_ij = torch.einsum('... r d, ... c d -> ... r c', dOi, Vj)

            Di = torch.sum(dOi * Oi, dim=-1, keepdims=True)
            dS_ij = P_ij * (dP_ij - Di)

            dQ_BLOCKS[i] = dQ_BLOCKS[i]   scale * torch.einsum('... r c, ... c d -> ... r d', dS_ij, Kj)

            dKj_block = dKj_block   scale * torch.einsum('... r c, ... r d -> ... c d', dS_ij, Qi)
        
        dK_BLOCKS[j] = dKj_block
        dV_BLOCKS[j] = dVj_block
    
    dQ = torch.cat(dQ_BLOCKS, dim=2)
    dK = torch.cat(dK_BLOCKS, dim=2)
    dV = torch.cat(dV_BLOCKS, dim=2)
    return dQ, dK, dV

def flash_attention_causal(Q, K, V):
    out = flash_attention_causal_forward(Q, K, V)
    return out[0]

if __name__ == "__main__":
    Q = torch.randn(1, 2, 4096, 1024, requires_grad=True).to(device='cuda')
    K = torch.randn(1, 2, 4096, 1024, requires_grad=True).to(device='cuda')
    V = torch.randn(1, 2, 4096, 1024, requires_grad=True).to(device='cuda')

    for i in range(10):
        start1 = time.time_ns()
        out1 = flash_attention_causal(Q, K, V)
        end1 = time.time_ns()

        start2 = time.time_ns()
        out2 = normal_attention_causal(Q, K, V)
        end2 = time.time_ns()

        t1 = (end1 - start1) / 1000000
        t2 = (end2 - start2) / 1000000

        print(f'{t1}ms, {t2}ms')
        print(torch.allclose(out1, out2, atol=1e-5))

0 人点赞