第八篇:强化学习值迭代及代码实现

2023-08-08 14:40:38 浏览数 (3)

你好,我是郭震(zhenguo)

前几天我们学习强化学习策略迭代,今天,强化学习第8篇:强化学习值迭代

值迭代是强化学习另一种求解方法,用于找到马尔可夫决策过程(MDP)中的最优值函数。

值迭代

值迭代可以总结为如下几点:

  • 值迭代通过不断迭代更新值函数来逼近最优值函数,从而确定最优策略。
  • 值迭代的关键是在每次迭代中更新值函数。
  • 对于每个状态,通过考虑所有可能的动作和下一个状态,选择能够使值最大化的动作,并计算更新后的值函数。
  • 迭代更新值函数,更新公式也是贝尔曼方程,和策略迭代值函数更新公式一样。
  • 值迭代需要进行多次迭代,直到值函数收敛为止。收敛时,值函数不再发生显著变化。

可以看到:值迭代是比策略迭代更为简单的一种迭代方法。

代码实现

值迭代,求迷宫问题,完整代码。

只使用numpy

代码语言:javascript复制
import numpy as np

定义迷宫地图,在迷宫地图中,不同的数字代表不同的含义:

  • 0:表示可以通过的空格,即可行走的路径。
  • -1:表示墙壁或障碍物,表示不能通过的障碍物区域。
  • 1:表示目标位置,即终点位置。

其中,0代表可行走的路径,-1代表障碍物或墙壁,1代表迷宫的终点位置。这些数值用于描述迷宫的不同区域,以帮助算法进行路径搜索和价值计算。如下所示:

代码语言:javascript复制
# 定义迷宫地图
maze = np.array([
    [0, 0, 0, 0],
    [0, -1, 0, -1],
    [0, 0, 0, 0],
    [-1, 0, -1, 1]
])

定义参数

代码语言:javascript复制
# 定义参数
gamma = 0.9  # 折扣因子
epsilon = 1e-6  # 收敛阈值

初始值函数

代码语言:javascript复制
# 初始化值函数
V = np.zeros(maze.shape)

进行值迭代

代码语言:javascript复制
# 进行值迭代
while True:
    delta = 0
    for i in range(maze.shape[0]):
        for j in range(maze.shape[1]):
            if maze[i, j] == -1 or maze[i, j] == 1:
                continue
            # 计算当前状态的最大价值
            max_value = float("-inf")
            for action in [(0, 1), (0, -1), (1, 0), (-1, 0)]:
                ni, nj = i   action[0], j   action[1]
                if ni >= 0 and ni < maze.shape[0] and nj >= 0 and nj < maze.shape[1] and maze[ni, nj] != -1:
                    max_value = max(max_value, gamma * V[ni, nj])
            # 更新值函数
            new_value = maze[i, j]   max_value
            delta = max(delta, abs(new_value - V[i, j]))
            V[i, j] = new_value
    if delta < epsilon:
        break

# 打印最优值函数
print("最优值函数:")
print(V)

这里面的核心代码就是求解贝尔曼方程:

其中,

V(s)

表示状态

s

的值函数,即按照某个策略获得的预期回报。

max_a

表示选择能够使得值最大化的动作

a

sum_{s', r}

表示对所有可能的下一个状态

s'

和奖励

r

进行求和。

p(s', r | s, a)

表示在状态

s

下执行动作

a

后转移到状态

s'

且获得奖励

r

的概率。

gamma

是折扣因子,用于平衡当前和未来的奖励。

在上述代码中,首先定义了迷宫地图,并设置了折扣因子和收敛阈值。然后,通过值迭代算法逐步更新值函数,直到值函数的变化小于收敛阈值为止。最后,打印出最优的值函数。

0 人点赞