LeetCode 周赛上分之旅 # 36 KMP 字符串匹配殊途同归

2023-08-18 17:22:55 浏览数 (1)

周赛 356

T1. 满足目标工作时长的员工数目

  • 标签:模拟

T2. 统计完全子数组的数目

  • 标签:滑动窗口、散列表

T3. 包含三个字符串的最短字符串

  • 标签:贪心、全排列、前后缀分解、KMP

T4. 统计范围内的步进数字数

  • 标签:数位 DP、记忆化

T1. 满足目标工作时长的员工数目

代码语言:javascript复制
https://leetcode.cn/problems/number-of-employees-who-met-the-target/

题解(模拟)

简单模拟题。

代码语言:javascript复制
class Solution {
public:
    int numberOfEmployeesWhoMetTarget(vector<int>& hours, int target) {
        int ret = 0;
        for (int i = 0; i < hours.size(); i  ) {
            if (hours[i] >= target) ret  ;
        }
        return ret;
    }
};
代码语言:javascript复制
class Solution:
    def numberOfEmployeesWhoMetTarget(self, hours: List[int], target: int) -> int:
        return sum(e >= target for e in hours)

复杂度分析:

  • 时间复杂度:
O(n)

线性扫描;

  • 空间复杂度:
O(1)

仅使用常量级别空间。


T2. 统计完全子数组的数目

代码语言:javascript复制
https://leetcode.cn/problems/count-complete-subarrays-in-an-array/

题解一(枚举子数组 散列表)

枚举子数组,求满足条件的子数组数

代码语言:javascript复制
class Solution {
public:
    int countCompleteSubarrays(vector<int>& nums) {
        int n = nums.size();
        int ret = 0;
        // 目标元素个数
        int target = unordered_set<int>(nums.begin(), nums.end()).size();
        // 枚举子数组
        for (int i = 0; i < nums.size(); i  ) {
            unordered_set<int> curSet;
            for (int j = i; j < nums.size(); j  ) {
                curSet.insert(nums[j]);
                if (curSet.size() == target) {
                    ret  = n - j;
                    break;
                }
            }
        }
        return ret;
    }
};

复杂度分析:

  • 时间复杂度:
O(n^2)

枚举子数组时间;

  • 空间复杂度:
O(n)

散列表空间。

题解二(滑动窗口 散列表)

在题解一中,当子数组的满足条件时,我们不再需要扩展右指针 j,其实左指针 i 也类似。当存在子数组 [i, j] 满足条件时,我们可以收缩左指针到 [i 1, j],如果子数组依然满足条件,则可以继续记录子数组个数 n - j 个。

代码语言:javascript复制
class Solution {
public:
    int countCompleteSubarrays(vector<int>& nums) {
        int n = nums.size();
        int ret = 0;
        // 目标元素个数
        int target = unordered_set<int>(nums.begin(), nums.end()).size();
        // 滑动窗口
        unordered_map<int, int> cnts;
        int i = 0;
        for (int j = 0; j < nums.size(); j  ) {
            cnts[nums[j]]  ;
            while (cnts.size() == target) {
                ret  = n - j;
                if (--cnts[nums[i]] == 0) cnts.erase(nums[i]);
                i  ;
            }
        }
        return ret;
    }
};

复杂度分析:

  • 时间复杂度:
O(n)

滑动窗口的 i 指针和 j 指针最多移动 n 次;

  • 空间复杂度:
O(n)

散列表空间。

相似题目:

  • 3. 无重复字符的最长子串
  • 159. 至多包含两个不同字符的最长子串
  • 209. 长度最小的子数组
  • 424. 替换后的最长重复字符
  • 713. 乘积小于 K 的子数组
  • 992. K 个不同整数的子数组

T3. 包含三个字符串的最短字符串

代码语言:javascript复制
https://leetcode.cn/problems/shortest-string-that-contains-three-strings/

题解一(贪心)

首先,合并字符串 a 和字符串 b 可以用前后缀分解来模拟:a 的最长后缀与 b 的最长前缀匹配,得到的合并字符串是最短的。而对于目标答案的合并方案来说,必然是 [a, b, c] 的全排列中的一种:

  • a b c
  • a c b
  • b a c
  • b c a
  • c a b
  • c b a

虽然,严谨来说局部贪心是错误的(即先将 a 和 b 合并得到最短字符串 ab,再将 ab 与 c 合并)。例如以下测试用例,这说明在第一次合并中选择最短的字符串,不一定是全局最短的字符串。但是,最优解必然可以通过全排列中的其他方案获得。因此,直接使用 “局部贪心” 即可。

代码语言:javascript复制
a = "cdaa"
b = "aaef"
c = "daaae"
# a   b   c 其中 a   b = "cdaaef",无法与 c 合并得到最优解 “cdaaaef”
# a   c   b 可以得到最优解 “cdaaaef”
代码语言:javascript复制
class Solution:
    def minimumString(self, a: str, b: str, c: str) -> str:
        def merge(a: str, b: str) -> str:
            if b in a: return a
            for i in range(min(len(a), len(b)), 0, -1):
                # 前后缀对比
                if a[-i:] == b[:i]: 
                    return a   b[i:]
            return a   b
        ret = ""
        for a, b, c in permutations((a, b, c)): 
            temp = merge(merge(a,b), c)
            # 优先最短字符串,再考虑字典序最小
            if (ret == "" or len(temp) < len(ret) or (len(temp) == len(ret) and temp < ret)):
                ret = temp
        return ret

复杂度分析:

  • 时间复杂度:
O(n^2)

单次合并的时间复杂度是

O(n^2)

  • 空间复杂度:
O(n)

临时字符串空间。

题解二(KMP)

题解一时间复杂度的瓶颈在 merge 函数,对于两个字符串的最长的前后缀匹配长度,这正好就是 KMP 算法中求解 next 数组的步骤,而 KMP 算法的时间复杂度是 O(n),存在优化空间。

  • next[i] 的含义:s[:i] 的后缀与前缀的最长匹配长度

另外还有一个细节,在合并 a 和 b 时我们在中间插入分隔符 “#”,这是为了避免匹配长度大于 a 或 b的长度。例如:

代码语言:javascript复制
a = "cac"
b = "aca"
# 那么 a   b = "cacaca" 会出现匹配长度大于 a 或 b的长度
代码语言:javascript复制
class Solution:
    def minimumString(self, a: str, b: str, c: str) -> str:
        def merge(a: str, b: str) -> str:
            if b in a: return a
      # 拼接字符串,以计算 b 的后缀与 a 的前缀的匹配长度
            s = a   "#"   b
            # KMP 求 next 数组
            j, next = 0, [0] * len(s)
            for i in range(1, len(s)):
                while j > 0 and s[i] != s[j]:
                    j = next[j - 1]
                if s[i] == s[j]:
                    j  = 1
                next[i] = j
            # next[-1]: s[-1] 的最长匹配前缀
            return b   a[next[-1]:]
        ret = ""
        for a, b, c in permutations((a, b, c)): 
            temp = merge(merge(a,b), c)
            # 优先最短字符串,再考虑字典序最小
            if (ret == "" or len(temp) < len(ret) or (len(temp) == len(ret) and temp < ret)):
                ret = temp
        return ret

复杂度分析:

  • 时间复杂度:
O(n)

单次合并的时间复杂度是

O(n)

  • 空间复杂度:
O(n)

临时字符串空间。


T4. 统计范围内的步进数字数目

代码语言:javascript复制
https://leetcode.cn/problems/count-stepping-numbers-in-range/

题解(数位 DP 记忆化)

相对标准的数位 DP 模板题。

  • 1、数位 DP: 我们定义 dp[i, pre, isNumber, isLimit] 表示从第 i 位开始的合法方案数,其中:
    • pre 表示上一个数位选择的值;
    • isNumber 表示已填数位是否构造出合法数字;
    • isLimit 表示当前数位是否被当前数位的最大值约束。
  • 2、差值: 由于题目输入是字符串,要计算出 [low, high] 之间的合法方案数,我们可以计算出 [0, high] 和 [0, low] 之间合法方案数的差值,我们可以再单独判断 low 是否合法。
  • 3、记忆化: 对于相同 dp[i, …] 子问题,可能会重复计算,可以使用记忆化优化时间复杂度:
代码语言:javascript复制
class Solution {
    
    val MOD = 1000000007
    
    fun countSteppingNumbers(low: String, high: String): Int {
        // 数位 DP
        return ((f(high) - f(low)   if (check(low)) 1 else 0)   MOD) % MOD
    }
    
    private fun f(num: String): Int {
        val memo = Array(num.length) { Array(10) { IntArray(2) { -1 } } }
        return dp(memo, 0, num, '0', false, true)
    }
    
    private fun check(num: String) : Boolean {
        for (i in 1 until num.length) {
            if (Math.abs(num[i] - num[i - 1]) != 1) return false
        }
        return true
    }
    
    // dp[i, pre, isNumber]
    private fun dp(memo: Array<Array<IntArray>>, i: Int, high: String, pre: Char, isNumber: Boolean, isLimit: Boolean): Int {
        // 终止条件
        if (i == high.length) {
            return if (isNumber) 1 else 0
        }
        // 读备忘录
        if (!isLimit && -1 != memo[i][pre - '0'][if (isNumber) 1 else 0]) {
            return memo[i][pre - '0'][if(isNumber) 1 else 0]
        }
        var ret = 0
        val lower = '0'
        val upper = if (isLimit) high[i] else '9'
        for (choice in lower .. upper) {
            if (!isNumber || Math.abs(choice - pre) == 1) {
                ret = (ret   dp(memo, i   1, high, choice, isNumber || choice != '0', isLimit && choice == upper)) % MOD
            }
        }
        if (!isLimit) memo[i][pre - '0'][if (isNumber) 1 else 0] = ret
        return ret
    }
}

复杂度分析:

  • 时间复杂度:
O(nC·C)

其中 n 为数位长度,C 为字符集大小 ,总共有 n·C 个子状态,每个子状态的时间复杂度是

O(C)

,整体时间复杂度是

O(n·C^2)
  • 空间复杂度:
O(n·C)

记忆化空间

0 人点赞