版本:1.0.1
最后更新时间:2022年11月10日 09:07 修改次数:1
历史修改内容: 1.0.1
:随机变量函数的期望公式
数学期望
离散型
sum_{k=1}^{infty}x_kp_k 绝对收敛
连续型
绝对收敛
性质:
- E(C)=C, C是常数
- E(kX)=kE(X),k是常数
- E(X_1 X_2)=E(X_1) E(X_2), quad E(sumlimits_{i=1}^{n} X_i)=sumlimits_{i=1}^{n}E(X_i)
- 若X、Y独立Longrightarrow E(XY)=E(X)E(Y)
随机变量函数的期望
一维($Y=g(X)$)
- 离散型
- 连续型
X sim N(0, sigma^2), 求 E(X^n). n为奇数:E(X^n)=sigma^n(n-1)!!,n为偶数:E(X^n)=0
二维($Z=g(X,Y)$)
- 离散型
- 连续型
方差
的求法:
*性质:
- D(C)=0, C为常数
- D(CX)=C^2D(X)
- D(aX b)=a^2D(X), quad D(sumlimits_{i=1}^{n} C_iX_i b)=sumlimits_{i=1}^{n}C_i^2D(X_i)
- D(X)=0 Longleftrightarrow P{X=c}=1,c=E(X)
协方差
$$ begin{aligned} Cov(X,Y) &=E{[X-E(X)][Y-E(Y)]} &=E(XY)-E(X)E(Y) &=rho_{XY}sqrt{D(X)}sqrt{D(Y)} end{aligned} $$
性质:
- Cov(X,Y)=Cov(Y,X)
- Cov(X,X)=D(X)
- Cov(aX,bY)=abCov(X,Y)
- Cov(X Y, Z)=Cov(X,Z) Cov(Y,Z)
随机向量的期望和方差
设
特征函数
- 离散型
- 连续型
性质:
- f(0)=1
- f(-t)=bar{f(t)}
- 若a、b是常数,Y=aX b,则f_Y(t)=E(e^{it(aX b)})=Ee^{itb}Ee^{itaX}=e^{itb}f_X(at)
- 若X、Y相互独立,则f_{X Y}(t)=f_X(t)f_Y(t)
- EX^k=(-i)^kf_X^{(k)}(0)
常见分布的特征函数及其推导过程
切比雪夫不等式
柯西-施瓦兹不等式
$$ begin{aligned} |E(XY)|^2 le EX^2EY^2 Cov^2(X,Y) le DXDY end{aligned} $$