案例:是谁用了我的临时表空间?

2023-08-24 17:27:53 浏览数 (1)

环境:RHEL 6.5 Oracle 11.2.0.4 RAC ADG

起初发现自己的ADG测试环境不再同步,进一步分析是DATA磁盘组空间耗尽导致的,可是最近在磁盘组上的数据库都没有做过什么测试,且测试磁盘组一直都留有2G 剩余空间,那是什么导致突然没空间了呢? 经过查询dba_data_files发现数据文件的确没有什么增长,但查询dba_temp_files发现临时文件空间增长严重。

代码语言:javascript复制
sys@DEMO> set lines 180
sys@DEMO> select file_id, file_name, tablespace_name, bytes/1048576 "MB" from dba_temp_files;

   FILE_ID FILE_NAME                                               TABLESPACE_NAME                        MB
---------- ------------------------------------------------------- ------------------------------ ----------
         1  DATA/demo/tempfile/temp.264.1018829761                 TEMP                                 2701
         2  DATA/demo/tempfile/temp_jingyu.258.1018830415          TEMP_JINGYU                            30

sys@DEMO> 

或者直接从asmcmd中也可以清楚看到TEMP文件占用大量空间:

代码语言:javascript复制
ASMCMD> pwd
 data/demo/tempfile
ASMCMD> ls -ls
Type      Redund  Striped  Time             Sys  Block_Size  Blocks       Bytes       Space  Name
TEMPFILE  UNPROT  COARSE   NOV 16 09:00:00  Y          8192  345729  2832211968  2834300928  TEMP.264.1018829761
TEMPFILE  UNPROT  COARSE   NOV 04 10:00:00  Y          8192    3841    31465472    32505856  TEMP_JINGYU.258.1018830415
ASMCMD> du
Used_MB      Mirror_used_MB
   2734                2734

基本已经确认了就是temp文件占用了空间,导致DATA磁盘组空间耗尽,那么是谁使用了临时表空间呢?根据DG不同步的时间点初步定位是在11-16号这天,我们可以直接根据DBA_HIST_ACTIVE_SESS_HISTORY中的TEMP_SPACE_ALLOCATED字段进一步定位:

DBA_HIST_ACTIVE_SESS_HISTORY TEMP_SPACE_ALLOCATED Amount of TEMP memory (in bytes) consumed by this session at the time this sample was taken

代码语言:javascript复制
select instance_number, to_char(sample_time,'mm-dd hh24:mi'), sum(TEMP_SPACE_ALLOCATED) from dba_hist_active_sess_history where sample_time > to_date('11-16 00:00','mm-dd hh24:mi') and sample_time < to_date('11-17 00:00','mm-dd hh24:mi')  group by instance_number, to_char(sample_time,'mm-dd hh24:mi')
    order by 1, 2;
    省略部分输出..

              2 11-16 08:43
              2 11-16 08:44
              2 11-16 08:50                 574619648
              2 11-16 08:51                1743781888
              2 11-16 08:52                3379560448
              2 11-16 08:53                5015339008
              2 11-16 08:54                6727663616
              2 11-16 08:55                8554283008
              2 11-16 08:56                1.0105E 10
              2 11-16 08:57                1.1897E 10
              2 11-16 08:58                1.3597E 10
              2 11-16 08:59                1.4906E 10
              2 11-16 09:00                2787115008
              2 11-16 09:02
              2 11-16 09:04

进一步细化时间,秒级别(注意DBA_HIST_ACTIVE_SESS_HISTORY默认采样数据间隔为10s)

代码语言:javascript复制
select instance_number, to_char(sample_time,'mm-dd hh24:mi:ss'), sum(TEMP_SPACE_ALLOCATED) from dba_hist_active_sess_history where sample_time > to_date('11-16 08:43','mm-dd hh24:mi') and sample_time < to_date('11-16 09:02','mm-dd hh24:mi')  group by instance_number, to_char(sample_time,'mm-dd hh24:mi:ss')
    order by 1, 2;

INSTANCE_NUMBER TO_CHAR(SAMPLE SUM(TEMP_SPACE_ALLOCATED)
--------------- -------------- -------------------------
省略部分输出..
              2 11-16 08:44:29
              2 11-16 08:50:29                  35651584
              2 11-16 08:50:39                 134217728
              2 11-16 08:50:49                 182452224
              2 11-16 08:50:59                 222298112
              2 11-16 08:51:10                 266338304
              2 11-16 08:51:20                 318767104
              2 11-16 08:51:30                 359661568
              2 11-16 08:51:40                 386924544
              2 11-16 08:51:50                 412090368
              2 11-16 08:52:00                 445644800
              2 11-16 08:52:11                 492830720
              2 11-16 08:52:21                 545259520
              2 11-16 08:52:31                 591396864
              2 11-16 08:52:41                 628097024
              2 11-16 08:52:51                 676331520
              2 11-16 08:53:01                 723517440
              2 11-16 08:53:11                 771751936
              2 11-16 08:53:21                 819986432
              2 11-16 08:53:31                 866123776
              2 11-16 08:53:41                 897581056
              2 11-16 08:53:51                 936378368
              2 11-16 08:54:01                 991952896
              2 11-16 08:54:11                1048576000
              2 11-16 08:54:21                1099956224
              2 11-16 08:54:31                1145044992
              2 11-16 08:54:41                1194328064
              2 11-16 08:54:51                1247805440
              2 11-16 08:55:01                1301282816
              2 11-16 08:55:12                1354760192
              2 11-16 08:55:22                1401946112
              2 11-16 08:55:32                1449132032
              2 11-16 08:55:42                1502609408
              2 11-16 08:55:52                1544552448
              2 11-16 08:56:02                1572864000
              2 11-16 08:56:12                1611661312
              2 11-16 08:56:22                1657798656
              2 11-16 08:56:32                1704984576
              2 11-16 08:56:42                1754267648
              2 11-16 08:56:52                1803550720
              2 11-16 08:57:02                1853882368
              2 11-16 08:57:12                1906311168
              2 11-16 08:57:22                1957691392
              2 11-16 08:57:32                2012217344
              2 11-16 08:57:42                2058354688
              2 11-16 08:57:52                2108686336
              2 11-16 08:58:02                2153775104
              2 11-16 08:58:12                2203058176
              2 11-16 08:58:23                2253389824
              2 11-16 08:58:33                2298478592
              2 11-16 08:58:43                2332033024
              2 11-16 08:58:53                2356150272
              2 11-16 08:59:03                2383413248
              2 11-16 08:59:13                2403336192
              2 11-16 08:59:24                2443182080
              2 11-16 08:59:34                2487222272
              2 11-16 08:59:44                2550136832
              2 11-16 08:59:54                2638217216
              2 11-16 09:00:04                2786066432
              2 11-16 09:00:14                   1048576
              2 11-16 09:00:24

81 rows selected.

实例2从11-16 08:50:29 开始,到 09:00:04 结束,temp增长到2G (2786066432),那么具体是哪些SQL消耗的呢? 上面的查询可以直接加入sql_id字段定位,发现都是同一个SQL导致的:

代码语言:javascript复制
select instance_number, to_char(sample_time,'mm-dd hh24:mi:ss'), sql_id, sum(TEMP_SPACE_ALLOCATED) from dba_hist_active_sess_history where sample_time > to_date('11-16 08:43','mm-dd hh24:mi') and sample_time < to_date('11-16 09:02','mm-dd hh24:mi')  group by instance_number, to_char(sample_time,'mm-dd hh24:mi:ss'), sql_id
    order by 1, 2;

              2 11-16 08:59:24 auyf8px9ywc6j                2443182080
              2 11-16 08:59:34 auyf8px9ywc6j                2487222272
              2 11-16 08:59:44 auyf8px9ywc6j                2550136832
              2 11-16 08:59:54 auyf8px9ywc6j                2638217216
              2 11-16 09:00:04 auyf8px9ywc6j                2786066432

SQL_ID auyf8px9ywc6j 对应的文本为:

代码语言:javascript复制
select sql_text from dba_hist_sqltext where sql_id = 'auyf8px9ywc6j';

SQL_TEXT
--------------------------------------------------------------------------------
WITH SNAP_RANGES AS (SELECT /*  FULL(ST) */ SN.DBID ,SN.INSTANCE_NUMBER ,SN.STAR
TUP_TIME ,ST.STAT_ID ,ST.STAT_NAME ,MIN(SN.SNAP_ID) AS MIN_SNAP ,MAX(SN.SNAP_ID)
 AS MAX_SNAP ,MIN(CAST(BEGIN_INTERVAL_TIME AS DATE)) AS MIN_DATE ,MAX(CAST(END_I
NTERVAL_TIME AS DATE)) AS MAX_DATE FROM DBA_HIST_SNAPSHOT SN ,WRH$_STAT_NAME ST
WHERE SN.BEGIN_INTERVAL_TIME > TRUNC(SYSDATE) - 7 AND SN.END_INTERVAL_TIME < TRU
NC(SYSDATE) AND SN.DBID = ST.DBID AND ST.STAT_NAME IN ('DB time', 'DB CPU') GROU
P BY SN.DBID,SN.INSTANCE_NUMBER,SN.STARTUP_TIME,ST.STAT_ID,ST.STAT_NAME ) ,DELTA
_DATA AS (SELECT SR.DBID ,SR.INSTANCE_NUMBER ,SR.STAT_NAME ,CASE WHEN SR.STARTUP
_TIME BETWEEN SR.MIN_DATE AND SR.MAX_DATE THEN TM1.VALUE   (TM2.VALUE - TM1.VALU
E) ELSE (TM2.VALUE - TM1.VALUE) END AS DELTA_TIME FROM WRH$_SYS_TIME_MODEL TM1 ,
WRH$_SYS_TIME_MODEL TM2 ,SNAP_RANGES SR WHERE TM1.DBID = SR.DBID AND TM1.INSTANC
E_NUMBER = SR.INSTANCE_NUMBER AND TM1.SNAP_ID = SR.MIN_SNAP AND TM1.STAT_ID = SR
.STAT_ID AND TM2.DBID = SR.DBID AND TM2.INSTANCE_NUMBER = SR.INSTANCE_NUMBER AND
 TM2.SNAP_ID = SR.MAX_SNAP AND TM2.STAT_ID = SR.STAT_ID ) SELECT STAT_NAME ,ROUN
D(SUM(DELTA_TIME/1000000),2) AS SECS FROM DELTA_DATA GROUP BY STAT_NAME

SQL执行计划为:

代码语言:javascript复制
set lines 1000 pages 1000
select * from table(dbms_xplan.display_awr('auyf8px9ywc6j'));

Plan hash value: 295135324

-------------------------------------------------------------------------------------------------------------------------------------
| Id  | Operation                                  | Name                   | Rows  | Bytes | Cost (%CPU)| Time     | Pstart| Pstop |
-------------------------------------------------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT                           |                        |       |       |    13 (100)|          |       |       |
|   1 |  HASH GROUP BY                             |                        |     1 |    87 |    13   (8)| 00:00:01 |       |       |
|   2 |   VIEW                                     | VM_NWVW_1              |     1 |    87 |    13   (8)| 00:00:01 |       |       |
|   3 |    FILTER                                  |                        |       |       |            |          |       |       |
|   4 |     HASH GROUP BY                          |                        |     1 |   247 |    13   (8)| 00:00:01 |       |       |
|   5 |      HASH JOIN                             |                        |     1 |   247 |    12   (0)| 00:00:01 |       |       |
|   6 |       NESTED LOOPS                         |                        |     1 |   204 |     7   (0)| 00:00:01 |       |       |
|   7 |        NESTED LOOPS                        |                        |     1 |   204 |     7   (0)| 00:00:01 |       |       |
|   8 |         NESTED LOOPS                       |                        |     1 |   127 |     7   (0)| 00:00:01 |       |       |
|   9 |          TABLE ACCESS FULL                 | WRM$_SNAPSHOT          |     1 |    50 |     7   (0)| 00:00:01 |       |       |
|  10 |          PARTITION RANGE ITERATOR          |                        |     1 |    77 |     0   (0)|          |   KEY |   KEY |
|  11 |           TABLE ACCESS BY LOCAL INDEX ROWID| WRH$_SYS_TIME_MODEL    |     1 |    77 |     0   (0)|          |   KEY |   KEY |
|  12 |            INDEX RANGE SCAN                | WRH$_SYS_TIME_MODEL_PK |     1 |       |     0   (0)|          |   KEY |   KEY |
|  13 |         PARTITION RANGE ITERATOR           |                        |     1 |       |     0   (0)|          |   KEY |   KEY |
|  14 |          INDEX RANGE SCAN                  | WRH$_SYS_TIME_MODEL_PK |     1 |       |     0   (0)|          |   KEY |   KEY |
|  15 |        TABLE ACCESS BY LOCAL INDEX ROWID   | WRH$_SYS_TIME_MODEL    |     1 |    77 |     0   (0)|          |     1 |     1 |
|  16 |       TABLE ACCESS FULL                    | WRH$_STAT_NAME         |     2 |    86 |     5   (0)| 00:00:01 |       |       |
-------------------------------------------------------------------------------------------------------------------------------------


45 rows selected.

如果进一步获取SQL的awr报告还可以看到SQL执行的统计信息:

代码语言:javascript复制
Stat Name   Statement Total Per Execution   % Snap Total
Elapsed Time (ms)   582,925 582,924.68  1.84
CPU Time (ms)   64,811  64,811.15   5.89
Executions  1        
Buffer Gets 2,472,595   2,472,595.00    8.88
Disk Reads  1   1.00    0.00
Parse Calls 1   1.00    0.00
Rows    0   0.00     
User I/O Wait Time (ms) 65,348       
Cluster Wait Time (ms)  17       
Application Wait Time (ms)  0        
Concurrency Wait Time (ms)  1        
Invalidations   0        
Version Count   1        
Sharable Mem(KB)    64       

查到这里其实已经确认这个事情并不是人为,因为如果拿这个SQL_ID去网络搜索,会发现有人提到过这个SQL_ID,说这是由MMON发起的SQL

It looks like something made by a DBA, but it comes from the MMON.

因为只是临时文件,且目前没有被持续使用到,又是测试环境,可以直接按照测试需求resize为较小值,然后为避免这样的事情,再关闭其自动扩展的功能:

代码语言:javascript复制
sys@DEMO> alter database tempfile 1 resize 500M;
sys@DEMO> alter database tempfile 1 autoextend off;

修改完再次查询:

代码语言:javascript复制
sys@DEMO> select file_id, file_name, tablespace_name, bytes/1048576 "MB" from dba_temp_files;

   FILE_ID FILE_NAME                                               TABLESPACE_NAME                        MB
---------- ------------------------------------------------------- ------------------------------ ----------
         1  DATA/demo/tempfile/temp.264.1018829761                 TEMP                                  500
         2  DATA/demo/tempfile/temp_jingyu.258.1018830415          TEMP_JINGYU                            30

DG备库启动应用,观察确认恢复正常同步:

代码语言:javascript复制
sys@ORCL> recover managed standby database using current logfile disconnect;
Media recovery complete.

sys@ORCL> select * from v$dataguard_stats;

NAME                             VALUE                          UNIT                           TIME_COMPUTED                  DATUM_TIME
-------------------------------- ------------------------------ ------------------------------ ------------------------------ ------------------------------
transport lag                     00 00:00:00                   day(2) to second(0) interval   11/18/2019 23:10:55            11/18/2019 23:10:54
apply lag                         00 00:00:00                   day(2) to second(0) interval   11/18/2019 23:10:55            11/18/2019 23:10:54
apply finish time                 00 00:00:00.000               day(2) to second(3) interval   11/18/2019 23:10:55
estimated startup time           24                             second                         11/18/2019 23:10:55

一般确认时间正确,各指标的value都为0即可。若不放心可以再手工去主库切换几次日志,看下备库的同步表现。

0 人点赞