kaggle实战-基于机器学习的中风病人预测

2023-08-25 11:01:14 浏览数 (3)

基于随机森林、逻辑回归、SVM的中风病人预测

原数据地址:https://www.kaggle.com/datasets/fedesoriano/stroke-prediction-dataset?datasetId=1120859&sortBy=voteCount&select=healthcare-dataset-stroke-data.csv

导入库

代码语言:javascript复制
import numpy as np
import pandas as pd

# 绘图
import matplotlib.pyplot as plt
import matplotlib.ticker as mtick
import matplotlib.gridspec as grid_spec
import seaborn as sns
plt.style.use("fivethirtyeight")

import plotly.express as px
import plotly.graph_objs as go

# 采样
from imblearn.over_sampling import SMOTE

# 数据标准化、分割、交叉验证
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler,LabelEncoder
from sklearn.model_selection import train_test_split,cross_val_score

# 各种模型
from sklearn.linear_model import LinearRegression,LogisticRegression
from sklearn.tree import DecisionTreeRegressor,DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.svm import SVC

# 模型评价
from sklearn.metrics import classification_report, confusion_matrix
from sklearn.metrics import accuracy_score, recall_score, roc_auc_score, precision_score, f1_score
import warnings
warnings.filterwarnings('ignore')

数据基本信息

先把数据导进来,查看数据的基本信息

下面我们查看数据基本信息

In [3]:

代码语言:javascript复制
df.shape

Out[3]:

代码语言:javascript复制
(5110, 12)

In [4]:

代码语言:javascript复制
df.dtypes

Out[4]:

代码语言:javascript复制
id                     int64
gender                object
age                  float64
hypertension           int64
heart_disease          int64
ever_married          object  # 字符型
work_type             object
Residence_type        object
avg_glucose_level    float64
bmi                  float64
smoking_status        object
stroke                 int64
dtype: object

In [5]:

代码语言:javascript复制
df.describe()  # 描述统计信息

字段分布

gender统计

In [6]:

代码语言:javascript复制
plt.figure(1, figsize=(12,5))

sns.countplot(y="gender", data=df)
plt.show()

age分布

In [7]:

代码语言:javascript复制
px.violin(y=df["age"])
代码语言:javascript复制
fig = px.histogram(df,
                   x="age",
                   color_discrete_sequence=['firebrick'])

fig.show()

ever_married

In [9]:

代码语言:javascript复制
plt.figure(1, figsize=(12,5))

sns.countplot(y="ever_married", data=df)

plt.show()

本数据集中的结婚人士大约是未结婚的两倍。

work-type

查看不同工作状态的人员数量

In [10]:

代码语言:javascript复制
plt.figure(1, figsize=(12,8))

sns.countplot(y="work_type", data=df)

plt.show()

Residence_type

In [11]:

代码语言:javascript复制
plt.figure(1, figsize=(12,8))

sns.countplot(y="Residence_type", data=df)

plt.show()

avg_glucose_level

血糖水平的分布

In [12]:

代码语言:javascript复制
fig = px.histogram(df,
                   x="avg_glucose_level",
                   color_discrete_sequence=['firebrick'])

fig.show()

可以看到大部分人的血糖还是在100以下,说明是正常的

bmi

bmi指标的分布情况

In [13]:

代码语言:javascript复制
fig = px.histogram(df,
                   x="bmi",
                   color_discrete_sequence=['firebrick'])

fig.show()

bmi指标的均值大约在28左右,呈现一定的正态分布

smoking_status

抽烟情况的统计

In [14]:

代码语言:javascript复制
plt.figure(1, figsize=(12,8))

sns.countplot(y="smoking_status", data=df)

plt.show()

可以看到抽烟或者曾经抽烟的人相对来说是少一些的

缺失值情况

缺失值统计

In [15]:

代码语言:javascript复制
df.isnull().sum()

Out[15]:

代码语言:javascript复制
id                     0
gender                 0
age                    0
hypertension           0
heart_disease          0
ever_married           0
work_type              0
Residence_type         0
avg_glucose_level      0
bmi                  201
smoking_status         0
stroke                 0
dtype: int64

In [16]:

代码语言:javascript复制
201 / len(df)  # 缺失比例

Out[16]:

代码语言:javascript复制
0.03933463796477495

缺失值可视化

In [17]:

代码语言:javascript复制
plt.title('Missing Value Status',fontweight='bold')
ax = sns.heatmap(df.isna().sum().to_frame(),
                 annot=True,
                 fmt='d',
                 cmap='vlag')

ax.set_xlabel('Amount Missing')

plt.show()
代码语言:javascript复制
import missingno as mso
mso.bar(df,color="blue")
plt.show()

缺失值处理

使用决策树回归来预测缺失值的BMI值:通过年龄、性别和现有的bmi值来进行预测填充

In [19]:

代码语言:javascript复制
dt_bmi = Pipeline(steps=[("scale",StandardScaler()), # 数据标准化
                         ("lr",DecisionTreeRegressor(random_state=42))
                        ])

In [20]:

代码语言:javascript复制
X = df[["age","gender","bmi"]].copy()

dic = {"Male":0, "Female":1, "Other":-1}

X["gender"] = X["gender"].map(dic).astype(np.uint8)
X.head()

取出非缺失值的部分进行训练:

代码语言:javascript复制
# 缺失值部分
missing = X[X.bmi.isna()]

# 非缺失值部分
X = X[~X.bmi.isna()]
y = X.pop("bmi")
代码语言:javascript复制
# 模型训练

dt_bmi.fit(X,y)

Out[22]:

代码语言:javascript复制
Pipeline(steps=[('scale', StandardScaler()),
                ('lr', DecisionTreeRegressor(random_state=42))])

In [23]:

代码语言:javascript复制
# 模型预测

y_pred = dt_bmi.predict(missing[["age","gender"]])
y_pred[:5]

Out[23]:

代码语言:javascript复制
array([29.87948718, 30.55609756, 27.24722222, 30.84186047, 33.14666667])

将预测的值转成Series,并且注意索引号:

代码语言:javascript复制
predict_bmi = pd.Series(y_pred, index=missing.index)
predict_bmi

Out[24]:

代码语言:javascript复制
1       29.879487
8       30.556098
13      27.247222
19      30.841860
27      33.146667
          ...
5039    32.716000
5048    28.313636
5093    31.459322
5099    28.313636
5105    28.476923
Length: 201, dtype: float64

填充到原来的df数据中:

In [25]:

代码语言:javascript复制
df.loc[missing.index, "bmi"] = predict_bmi

进行上面的预测和填充之后,我们再次查看缺失值情况,发现已经没有任何缺失值:

In [26]:

代码语言:javascript复制
df.isnull().sum()

Out[26]:

代码语言:javascript复制
id                   0
gender               0
age                  0
hypertension         0
heart_disease        0
ever_married         0
work_type            0
Residence_type       0
avg_glucose_level    0
bmi                  0
smoking_status       0
stroke               0
dtype: int64

数据EDA

In [27]:

代码语言:javascript复制
variables = [variable for variable in df.columns if variable not in ['id','stroke']]

# 除去id号和是否中风外的全部字段
variables

Out[27]:

代码语言:javascript复制
['gender',
 'age',
 'hypertension',
 'heart_disease',
 'ever_married',
 'work_type',
 'Residence_type',
 'avg_glucose_level',
 'bmi',
 'smoking_status']

连续型变量

In [28]:

代码语言:javascript复制
conts = ['age','avg_glucose_level','bmi']

for cont in conts:
    plt.figure(1, figsize=(15,6))
    sns.distplot(df[cont])

    plt.show()
几点结论:
  • 年龄age:整体分布比较均衡,不同年龄段的人数差异小
  • 血糖水平:主要集中在100以下
  • bmi指标:呈现一定的正态分布

中风和未中风

上面我们查看了连续型变量的分布情况;可以看到bmi呈现明显的左偏态的分布。下面我们对比中风和未中风的情况:

代码语言:javascript复制
conts = ['age','avg_glucose_level','bmi']

for cont in conts:
    plt.figure(1, figsize=(15,12))
    sns.displot(data=df,
                x=cont,
                hue="stroke",
                kind="kde")
plt.show()

从3个密度图中能够观察到:从上面的密度图中可以看出来:对于是否中风,年龄age是一个最主要的因素

对比不同年龄段的血糖和BMI指数

In [30]:

代码语言:javascript复制
px.scatter(df,x="age",
           y="avg_glucose_level",
           color="stroke",
           trendline='ols'
          )

年龄和血糖、bmi关系

代码语言:javascript复制
px.scatter(df,x="age",
           y="bmi",
           color="stroke",
           trendline='ols'
          )

年龄和患病几率

从散点分布图中看到:年龄可能真的是一个比较重要的因素,和BMI以及平均的血糖水平有着一定的关系。

可能随着年龄的增长,风险在增加。果真如此吗?

In [32]:

代码语言:javascript复制
background_color = "#fafafa"

fig = plt.figure(figsize=(12, 6),
                 dpi=160,
                 facecolor=background_color)

gs = fig.add_gridspec(2, 1)
gs.update(wspace=0.11, hspace=0.5)

ax0 = fig.add_subplot(gs[0, 0])
ax0.set_facecolor(background_color)

# 字段类型转化
df['age'] = df['age'].astype(int)

rate = []
for i in range(df['age'].min(), df['age'].max()):
    rate.append(df[df['age'] < i]['stroke'].sum() / len(df[df['age'] < i]['stroke']))  # sum求和就是中风人数 / 总人数

sns.lineplot(data=rate,color='#0f4c81',ax=ax0)

for s in ["top","right","left"]:
    ax0.spines[s].set_visible(False)

ax0.tick_params(axis='both',
                which='major',
                labelsize=8)

ax0.tick_params(axis=u'both',
                which=u'both',
                length=0)

ax0.text(-3,
         0.055,
         'Risk Increase by Age',
         fontsize=18,
         fontfamily='serif',
         fontweight='bold')

ax0.text(-3,0.047,
         'As age increase, so too does risk of having a stroke',
         fontsize=14,
         fontfamily='serif')


plt.show()

上面的图形说明了两点:

  1. 年龄越大,中风的几率的确越来越高
  2. 中风的几率是非常低的(y轴的值很低),这是由于中风和未中风的样本不均衡造成的

原数据5000个样本中只有249个中风样本,比例接近1:20

样本不均衡

代码语言:javascript复制
from pywaffle import Waffle

fig = plt.figure(
    figsize=(7, 2),
    dpi=150,
    facecolor=background_color,
    FigureClass=Waffle,
    rows=1,
    values=[1, 19],
    colors=['#0f4c81', "lightgray"],
    characters='⬤',
    font_size=16,
    vertical=True,
)

# 主标题
fig.text(0.035,0.78,
         'Stroked People in our dataset',
         fontfamily='serif',
         fontsize=10,
         fontweight='bold')
# 子标题
fig.text(0.035,
         0.65,
         '1:20 [249 out of 5000]',
         fontfamily='serif',
         fontsize=10)

plt.show()

属性分布

整体变量情况

首先我们剔除gender中为Other的情况

In [34]:

代码语言:javascript复制
str_only = df[df['stroke'] == 1]   # 中风
no_str_only = df[df['stroke'] == 0]  # 未中风

In [35]:

代码语言:javascript复制
len(str_only)

Out[35]:

代码语言:javascript复制
249

In [36]:

代码语言:javascript复制
# 剔除other
no_str_only = no_str_only[(no_str_only['gender'] != 'Other')]

下面的代码是比较在不同的属性下中风和未中风的情况:

代码语言:javascript复制
fig = plt.figure(figsize=(22,15))
gs = fig.add_gridspec(3, 3)
gs.update(wspace=0.35, hspace=0.27)

# 生成9个子图
ax0 = fig.add_subplot(gs[0, 0])
ax1 = fig.add_subplot(gs[0, 1])
ax2 = fig.add_subplot(gs[0, 2])
ax3 = fig.add_subplot(gs[1, 0])
ax4 = fig.add_subplot(gs[1, 1])
ax5 = fig.add_subplot(gs[1, 2])
ax6 = fig.add_subplot(gs[2, 0])
ax7 = fig.add_subplot(gs[2, 1])
ax8 = fig.add_subplot(gs[2, 2])

# 背景色
background_color = "#f6f6f6"
fig.patch.set_facecolor(background_color)

## 1、Age

ax0.grid(color='gray',
         linestyle=':',
         axis='y',
         zorder=0,  dashes=(1,5))

# 中风和未中风
positive = pd.DataFrame(str_only["age"])
negative = pd.DataFrame(no_str_only["age"])
# kde密度图
sns.kdeplot(positive["age"],  # 中风数据
            ax=ax0,  # 指定子图
            color="#0f4c81",  # 颜色
            shade=True,  # 阴影
            ec='black',  # 边缘色
            label="positive"  # label
           )

sns.kdeplot(negative["age"], # 未中风
            ax=ax0,
            color="#9bb7d4",
            shade=True,
            ec='black',
            label="negative")

ax0.yaxis.set_major_locator(mtick.MultipleLocator(2))
ax0.set_ylabel('')
ax0.set_xlabel('')
ax0.text(-20, # 文本信息设置
         0.0465,
         'Age',
         fontsize=14,
         fontweight='bold',
         fontfamily='serif',
         color="#323232")


# 2、Smoking
# 不同状态的人数
positive = pd.DataFrame(str_only["smoking_status"].value_counts())
# 比例情况
positive["Percentage"] = positive["smoking_status"].apply(lambda x: x/sum(positive["smoking_status"])*100)

negative = pd.DataFrame(no_str_only["smoking_status"].value_counts())
negative["Percentage"] = negative["smoking_status"].apply(lambda x: x/sum(negative["smoking_status"])*100)

ax1.text(0, 4,
         'Smoking Status',
         fontsize=14,
         fontweight='bold',
         fontfamily='serif',
         color="#323232")
ax1.barh(positive.index,
         positive['Percentage'],
         color="#0f4c81",
         zorder=3,
         height=0.7)
ax1.barh(negative.index,
         negative['Percentage'],
         color="#9bb7d4",
         zorder=3,
         ec='black',
         height=0.3)
ax1.xaxis.set_major_formatter(mtick.PercentFormatter())
ax1.xaxis.set_major_locator(mtick.MultipleLocator(10))

# gender
# 1、统计人数
positive = pd.DataFrame(str_only["gender"].value_counts())
# 2、转成比例
positive["Percentage"] = positive["gender"].apply(lambda x: x/sum(positive["gender"])*100)
negative = pd.DataFrame(no_str_only["gender"].value_counts())
negative["Percentage"] = negative["gender"].apply(lambda x: x/sum(negative["gender"])*100)

x = np.arange(len(positive))
ax2.text(-0.4, 68.5,
         'Gender',
         fontsize=14,
         fontweight='bold',
         fontfamily='serif',
         color="#323232")

ax2.grid(color='gray',
         linestyle=':',
         axis='y',
         zorder=0,
         dashes=(1,5))
ax2.bar(x,
        height=positive["Percentage"],
        zorder=3,
        color="#0f4c81",
        width=0.4)

ax2.bar(x 0.4,
        height=negative["Percentage"],
        zorder=3,
        color="#9bb7d4",
        width=0.4)
ax2.set_xticks(x   0.4 / 2)
ax2.set_xticklabels(['Male','Female'])
ax2.yaxis.set_major_formatter(mtick.PercentFormatter())
ax2.yaxis.set_major_locator(mtick.MultipleLocator(10))

for i,j in zip([0, 1], positive["Percentage"]):
    ax2.annotate(f'{j:0.0f}%',
                 xy=(i, j/2),
                 color='#f6f6f6',
                 horizontalalignment='center',
                 verticalalignment='center')

for i,j in zip([0, 1], negative["Percentage"]):
    ax2.annotate(f'{j:0.0f}%',
                 xy=(i 0.4, j/2),
                 color='#f6f6f6',
                 horizontalalignment='center',
                 verticalalignment='center')


# heart_disease

positive = pd.DataFrame(str_only["heart_disease"].value_counts())
positive["Percentage"] = positive["heart_disease"].apply(lambda x: x/sum(positive["heart_disease"])*100)
negative = pd.DataFrame(no_str_only["heart_disease"].value_counts())
negative["Percentage"] = negative["heart_disease"].apply(lambda x: x/sum(negative["heart_disease"])*100)

x = np.arange(len(positive))
ax3.text(-0.3, 110,
         'Heart Disease',
         fontsize=14,
         fontweight='bold',
         fontfamily='serif',
         color="#323232")
ax3.grid(color='gray',
         linestyle=':',
         axis='y',
         zorder=0,
         dashes=(1,5))

ax3.bar(x,
        height=positive["Percentage"],
        zorder=3,
        color="#0f4c81",
        width=0.4)

ax3.bar(x 0.4,
        height=negative["Percentage"],
        zorder=3,
        color="#9bb7d4",
        width=0.4)

ax3.set_xticks(x   0.4 / 2)
ax3.set_xticklabels(['No History','History'])
ax3.yaxis.set_major_formatter(mtick.PercentFormatter())
ax3.yaxis.set_major_locator(mtick.MultipleLocator(20))

for i,j in zip([0, 1], positive["Percentage"]):
    ax3.annotate(f'{j:0.0f}%',
                 xy=(i, j/2),
                 color='#f6f6f6',
                 horizontalalignment='center',
                 verticalalignment='center')
for i,j in zip([0, 1], negative["Percentage"]):
    ax3.annotate(f'{j:0.0f}%',
                 xy=(i 0.4, j/2),
                 color='#f6f6f6',
                 horizontalalignment='center',
                 verticalalignment='center')


# ## AX4 - TITLE

ax4.spines["bottom"].set_visible(False)
ax4.tick_params(left=False, bottom=False)
ax4.set_xticklabels([])
ax4.set_yticklabels([])
ax4.text(0.5, 0.6, 'Can we see patterns fornn patients in our data?', horizontalalignment='center', verticalalignment='center',
         fontsize=22, fontweight='bold', fontfamily='serif', color="#323232")

ax4.text(0.15,0.57,"Stroke", fontweight="bold", fontfamily='serif', fontsize=22, color='#0f4c81')
ax4.text(0.41,0.57,"&", fontweight="bold", fontfamily='serif', fontsize=22, color='#323232')
ax4.text(0.49,0.57,"No-Stroke", fontweight="bold", fontfamily='serif', fontsize=22, color='#9bb7d4')


# Glucose

ax5.grid(color='gray',
         linestyle=':',
         axis='y',
         zorder=0,
         dashes=(1,5))
positive = pd.DataFrame(str_only["avg_glucose_level"])
negative = pd.DataFrame(no_str_only["avg_glucose_level"])
sns.kdeplot(positive["avg_glucose_level"],
            ax=ax5,
            color="#0f4c81",
            ec='black',
            shade=True,
            label="positive")

sns.kdeplot(negative["avg_glucose_level"],
            ax=ax5,
            color="#9bb7d4",
            ec='black',
            shade=True,
            label="negative")

ax5.text(-55, 0.01855,
         'Avg. Glucose Level',
         fontsize=14,
         fontweight='bold',
         fontfamily='serif',
         color="#323232")
ax5.yaxis.set_major_locator(mtick.MultipleLocator(2))
ax5.set_ylabel('')
ax5.set_xlabel('')



# bmi

ax6.grid(color='gray',
         linestyle=':',
         axis='y',
         zorder=0,
         dashes=(1,5))

positive = pd.DataFrame(str_only["bmi"])
negative = pd.DataFrame(no_str_only["bmi"])
sns.kdeplot(positive["bmi"],
            ax=ax6,
            color="#0f4c81",
            ec='black',
            shade=True,
            label="positive")

sns.kdeplot(negative["bmi"],
            ax=ax6,
            color="#9bb7d4",
            ec='black',
            shade=True,
            label="negative")
ax6.text(-0.06,
         0.09,
         'BMI',
         fontsize=14,
         fontweight='bold',
         fontfamily='serif',
         color="#323232")
ax6.yaxis.set_major_locator(mtick.MultipleLocator(2))
ax6.set_ylabel('')
ax6.set_xlabel('')


# Work Type

positive = pd.DataFrame(str_only["work_type"].value_counts())
positive["Percentage"] = positive["work_type"].apply(lambda x: x/sum(positive["work_type"])*100)
positive = positive.sort_index()

negative = pd.DataFrame(no_str_only["work_type"].value_counts())
negative["Percentage"] = negative["work_type"].apply(lambda x: x/sum(negative["work_type"])*100)
negative = negative.sort_index()

ax7.bar(negative.index, height=negative["Percentage"], zorder=3, color="#9bb7d4", width=0.05)
ax7.scatter(negative.index, negative["Percentage"], zorder=3,s=200, color="#9bb7d4")
ax7.bar(np.arange(len(positive.index)) 0.4, height=positive["Percentage"], zorder=3, color="#0f4c81", width=0.05)
ax7.scatter(np.arange(len(positive.index)) 0.4, positive["Percentage"], zorder=3,s=200, color="#0f4c81")

ax7.yaxis.set_major_formatter(mtick.PercentFormatter())
ax7.yaxis.set_major_locator(mtick.MultipleLocator(10))
ax7.set_xticks(np.arange(len(positive.index)) 0.4 / 2)
ax7.set_xticklabels(list(positive.index),rotation=0)
ax7.text(-0.5, 66, 'Work Type', fontsize=14, fontweight='bold', fontfamily='serif', color="#323232")

# hypertension

positive = pd.DataFrame(str_only["hypertension"].value_counts())
positive["Percentage"] = positive["hypertension"].apply(lambda x: x/sum(positive["hypertension"])*100)
negative = pd.DataFrame(no_str_only["hypertension"].value_counts())
negative["Percentage"] = negative["hypertension"].apply(lambda x: x/sum(negative["hypertension"])*100)

x = np.arange(len(positive))
ax8.text(-0.45, 100, 'Hypertension', fontsize=14, fontweight='bold', fontfamily='serif', color="#323232")
ax8.grid(color='gray', linestyle=':', axis='y', zorder=0,  dashes=(1,5))
ax8.bar(x, height=positive["Percentage"], zorder=3, color="#0f4c81", width=0.4)
ax8.bar(x 0.4, height=negative["Percentage"], zorder=3, color="#9bb7d4", width=0.4)
ax8.set_xticks(x   0.4 / 2)
ax8.set_xticklabels(['No History','History'])
ax8.yaxis.set_major_formatter(mtick.PercentFormatter())
ax8.yaxis.set_major_locator(mtick.MultipleLocator(20))
for i,j in zip([0, 1], positive["Percentage"]):
    ax8.annotate(f'{j:0.0f}%',xy=(i, j/2), color='#f6f6f6', horizontalalignment='center', verticalalignment='center')
for i,j in zip([0, 1], negative["Percentage"]):
    ax8.annotate(f'{j:0.0f}%',xy=(i 0.4, j/2), color='#f6f6f6', horizontalalignment='center', verticalalignment='center')


# tidy up

for s in ["top","right","left"]:
    for i in range(0,9):
        locals()["ax" str(i)].spines[s].set_visible(False)

for i in range(0,9):
        locals()["ax" str(i)].set_facecolor(background_color)
        locals()["ax" str(i)].tick_params(axis=u'both', which=u'both',length=0)
        locals()["ax" str(i)].set_facecolor(background_color)


plt.show()

建模

模型baseline

In [38]:

代码语言:javascript复制
len(str_only)

Out[38]:

代码语言:javascript复制
249

In [39]:

代码语言:javascript复制
249 / len(df)

Out[39]:

代码语言:javascript复制
0.0487279843444227

说明总共有249个人是中风的。本数据的总人数是len(df),根据下面的表达式能够得到本次模型的baseline。

也就说,对于阳性中风患者的召回率,一个好的目标是4.8%。

字段编码

对4个字符型的字段进行编码工作:

In [40]:

代码语言:javascript复制
df['gender'] = df['gender'].replace({'Male':0,
                                     'Female':1,
                                     'Other':-1}
                                   ).astype(np.uint8)

df['Residence_type'] = df['Residence_type'].map({'Rural':0,
                                                 'Urban':1}
                                               ).astype(np.uint8)

df['work_type'] = df['work_type'].map({'Private':0,
                                       'Self-employed':1,
                                       'Govt_job':2,
                                       'children':-1,
                                       'Never_worked':-2}
                                     ).astype(np.uint8)

df['ever_married'] = df['ever_married'].map({'No':0,'Yes':1}).astype(np.uint8)

df.head()

抽烟状态的独热码转换:

In [41]:

代码语言:javascript复制
df["smoking_status"].value_counts()

Out[41]:

代码语言:javascript复制
never smoked       1892
Unknown            1544
formerly smoked     885
smokes              789
Name: smoking_status, dtype: int64

In [42]:

代码语言:javascript复制
df = df.join(pd.get_dummies(df["smoking_status"]))
df.drop("smoking_status",axis=1,inplace=True)

数据分割

In [43]:

代码语言:javascript复制
# 选取特征
X  = df.drop("stroke",axis=1)
# 目标变量
y = df['stroke']
from sklearn.model_selection import train_test_split

# 3-7比例
X_train, X_test, y_train, y_test = train_test_split(X, y, train_size=0.3, random_state=42)

上采样

前文中提到,本案例中风和未中风的数据比例接近1:20,在这里我们采样基于SMOTE的上采样方法

In [44]:

代码语言:javascript复制
oversample = SMOTE()
X_train_smote, y_train_smote = oversample.fit_resample(X_train, y_train.ravel())

In [45]:

代码语言:javascript复制
len(y_train_smote)

Out[45]:

代码语言:javascript复制
2914

In [46]:

代码语言:javascript复制
len(X_train_smote)

Out[46]:

代码语言:javascript复制
2914

建模

采用3种不同的分类模型来建立模型:Random Forest, SVM, Logisitc Regression

In [47]:

代码语言:javascript复制
rf_pipeline = Pipeline(steps = [('scale',StandardScaler()), # 标准化
                                ('RF',RandomForestClassifier(random_state=42))]  # 模型
                      )
svm_pipeline = Pipeline(steps = [('scale',StandardScaler()),
                                 ('SVM',SVC(random_state=42))])
logreg_pipeline = Pipeline(steps = [('scale',StandardScaler()),
                                    ('LR',LogisticRegression(random_state=42))])

10折交叉验证

In [48]:

代码语言:javascript复制
rf_cv = cross_val_score(rf_pipeline,
                        X_train_smote,
                        y_train_smote,
                        cv=10,
                        scoring='f1' # 模型得分评价指标
                       )

svm_cv = cross_val_score(svm_pipeline,
                         X_train_smote,
                         y_train_smote,
                         cv=10,
                         scoring='f1'
                        )

logreg_cv = cross_val_score(logreg_pipeline,
                            X_train_smote,
                            y_train_smote,
                            cv=10,
                            scoring='f1'
                           )

3种模型得分对比

In [49]:

代码语言:javascript复制
print('随机森林:', rf_cv.mean())
print('支持向量机:',svm_cv.mean())
print('逻辑回归:', logreg_cv.mean())
随机森林: 0.9628909366701726
支持向量机: 0.9363667907023254
逻辑回归: 0.8859930523017683

很明显:随机森林表现的最好!

模型训练fit

In [50]:

代码语言:javascript复制
rf_pipeline.fit(X_train_smote,y_train_smote)

svm_pipeline.fit(X_train_smote,y_train_smote)

logreg_pipeline.fit(X_train_smote,y_train_smote)

Out[50]:

代码语言:javascript复制
Pipeline(steps=[('scale', StandardScaler()),
                ('LR', LogisticRegression(random_state=42))])

In [51]:

代码语言:javascript复制
# 3种模型预测

rf_pred =rf_pipeline.predict(X_test)
svm_pred = svm_pipeline.predict(X_test)
logreg_pred = logreg_pipeline.predict(X_test)

评价指标

In [52]:

代码语言:javascript复制
# 1、混淆矩阵

rf_cm  = confusion_matrix(y_test, rf_pred )
svm_cm = confusion_matrix(y_test, svm_pred)
logreg_cm  = confusion_matrix(y_test, logreg_pred)

In [53]:

代码语言:javascript复制
print(rf_cm)
print("----")
print(svm_cm)
print("----")
print(logreg_cm)
[[3338   66]
 [ 164    9]]
----
[[3196  208]
 [ 148   25]]
----
[[3138  266]
 [ 116   57]]

In [54]:

代码语言:javascript复制
# 2、F_1得分
# F1分数可以看作是模型准确率和召回率的一种加权平均,它的最大值是1,最小值是0,值越大意味着模型越好

rf_f1  = f1_score(y_test,rf_pred)
svm_f1 = f1_score(y_test,svm_pred)
logreg_f1  = f1_score(y_test,logreg_pred)

In [55]:

代码语言:javascript复制
print('RF mean :',rf_f1)
print('SVM mean :',svm_f1)
print('LR mean :',logreg_f1)
RF mean : 0.07258064516129033
SVM mean : 0.1231527093596059
LR mean : 0.22983870967741934

随机森林模型的分类报告:

In [56]:

代码语言:javascript复制
from sklearn.metrics import plot_confusion_matrix, classification_report

print(classification_report(y_test,rf_pred))

print('Accuracy Score: ',accuracy_score(y_test,rf_pred))
              precision    recall  f1-score   support

           0       0.95      0.98      0.97      3404
           1       0.12      0.05      0.07       173

    accuracy                           0.94      3577
   macro avg       0.54      0.52      0.52      3577
weighted avg       0.91      0.94      0.92      3577

Accuracy Score:  0.9357003075202683

随机森林模型调参

基于网格搜索的参数调优:

In [57]:

代码语言:javascript复制
from sklearn.model_selection import GridSearchCV

n_estimators =[64,100,128,200]
max_features = [2,3,5,7]
bootstrap = [True,False]

param_grid = {'n_estimators':n_estimators,
             'max_features':max_features,
             'bootstrap':bootstrap}

rfc = RandomForestClassifier()

In [58]:

代码语言:javascript复制
grid = GridSearchCV(rfc,param_grid)

grid.fit(X_train,y_train)

Out[58]:

代码语言:javascript复制
GridSearchCV(estimator=RandomForestClassifier(),
             param_grid={'bootstrap': [True, False],
                         'max_features': [2, 3, 5, 7],
                         'n_estimators': [64, 100, 128, 200]})

In [59]:

代码语言:javascript复制
grid.best_params_  # 找到最优的参数

Out[59]:

代码语言:javascript复制
{'bootstrap': False, 'max_features': 3, 'n_estimators': 200}

In [60]:

代码语言:javascript复制
# 再次建立随机森林模型

rfc = RandomForestClassifier(
    max_features=3,
    n_estimators=200,
    bootstrap=False)

rfc.fit(X_train_smote,y_train_smote)

rfc_tuned_pred = rfc.predict(X_test)

In [61]:

代码语言:javascript复制
# 新的分类报告得分

print(classification_report(y_test,rfc_tuned_pred))

print('Accuracy Score: ',accuracy_score(y_test,rfc_tuned_pred))
print('F1 Score: ',f1_score(y_test,rfc_tuned_pred))
              precision    recall  f1-score   support

           0       0.95      0.98      0.97      3404
           1       0.05      0.02      0.03       173

    accuracy                           0.94      3577
   macro avg       0.50      0.50      0.50      3577
weighted avg       0.91      0.94      0.92      3577

Accuracy Score:  0.9362594352809617
F1 Score:  0.025641025641025644

逻辑回归模型调参

In [62]:

代码语言:javascript复制
penalty = ['l1','l2']
C = [0.001, 0.01, 0.1, 1, 10, 100]

log_param_grid = {'penalty': penalty,
                  'C': C}

logreg = LogisticRegression()
grid = GridSearchCV(logreg,log_param_grid)

In [63]:

代码语言:javascript复制
grid.fit(X_train_smote,y_train_smote)

Out[63]:

代码语言:javascript复制
GridSearchCV(estimator=LogisticRegression(),
             param_grid={'C': [0.001, 0.01, 0.1, 1, 10, 100],
                         'penalty': ['l1', 'l2']})

In [64]:

代码语言:javascript复制
grid.best_params_

Out[64]:

代码语言:javascript复制
{'C': 1, 'penalty': 'l2'}

In [65]:

代码语言:javascript复制
logreg_pipeline = Pipeline(steps = [('scale',StandardScaler()),
                                    ('LR',LogisticRegression(C=1,penalty='l2',random_state=42))])

logreg_pipeline.fit(X_train_smote,y_train_smote)

Out[65]:

代码语言:javascript复制
Pipeline(steps=[('scale', StandardScaler()),
                ('LR', LogisticRegression(C=1, random_state=42))])

In [66]:

代码语言:javascript复制
logreg_new_pred   = logreg_pipeline.predict(X_test) # 新预测

In [67]:

代码语言:javascript复制
print(classification_report(y_test,logreg_new_pred))

print('Accuracy Score: ',accuracy_score(y_test,logreg_new_pred))
print('F1 Score: ',f1_score(y_test,logreg_new_pred))
              precision    recall  f1-score   support

           0       0.96      0.92      0.94      3404
           1       0.18      0.33      0.23       173

    accuracy                           0.89      3577
   macro avg       0.57      0.63      0.59      3577
weighted avg       0.93      0.89      0.91      3577

Accuracy Score:  0.8932065977075762
F1 Score:  0.22983870967741934

支持向量机调参

In [68]:

代码语言:javascript复制
svm_param_grid = {
            'C': [0.1, 1, 10, 100, 1000],
            'gamma': [1, 0.1, 0.01, 0.001, 0.0001],
            'kernel': ['rbf']}

svm = SVC(random_state=42)

grid = GridSearchCV(svm, svm_param_grid)

In [69]:

代码语言:javascript复制
grid.fit(X_train_smote,y_train_smote)

Out[69]:

代码语言:javascript复制
GridSearchCV(estimator=SVC(random_state=42),
             param_grid={'C': [0.1, 1, 10, 100, 1000],
                         'gamma': [1, 0.1, 0.01, 0.001, 0.0001],
                         'kernel': ['rbf']})

In [70]:

代码语言:javascript复制
grid.best_params_

Out[70]:

代码语言:javascript复制
{'C': 100, 'gamma': 0.0001, 'kernel': 'rbf'}

In [71]:

代码语言:javascript复制
svm_pipeline = Pipeline(steps = [('scale',StandardScaler()),('SVM',SVC(C=100,gamma=0.0001,kernel='rbf',random_state=42))])

svm_pipeline.fit(X_train_smote,y_train_smote)

svm_tuned_pred   = svm_pipeline.predict(X_test)

In [72]:

代码语言:javascript复制
print(classification_report(y_test,svm_tuned_pred))

print('Accuracy Score: ',accuracy_score(y_test,svm_tuned_pred))
print('F1 Score: ',f1_score(y_test,svm_tuned_pred))
              precision    recall  f1-score   support

           0       0.96      0.93      0.94      3404
           1       0.16      0.27      0.20       173

    accuracy                           0.90      3577
   macro avg       0.56      0.60      0.57      3577
weighted avg       0.92      0.90      0.91      3577

Accuracy Score:  0.8951635448700028
F1 Score:  0.19700214132762314

结论

  1. 在交叉验证的过程中,随机森林表现的最好。
  2. 3种模型的对比:随机森林的精度最好,但是F1-score缺失最低的
  3. 模型可能特点:更能预测哪些人将会中风,而不是哪些人不会中风

0 人点赞