Pandas差集-交集-并集求解

2023-08-25 11:14:47 浏览数 (4)

Pandas求解差集、交集、并集

本文讲解的是如何利用Pandas函数求解两个DataFrame的差集、交集、并集

模拟数据

模拟一份简单的数据:

In [1]:

代码语言:javascript复制
import pandas as pd

In [2]:

代码语言:javascript复制
df1 = pd.DataFrame({"col1":[1,2,3,4,5],
                    "col2":[6,7,8,9,10]
                   })

df2 = pd.DataFrame({"col1":[1,3,7],
                    "col2":[6,8,10]
                   })

In [3]:

代码语言:javascript复制
df1

Out[3]:

col1

col2

0

1

6

1

2

7

2

3

8

3

4

9

4

5

10

In [4]:

代码语言:javascript复制
df2

Out[4]:

col1

col2

0

1

6

1

3

8

2

7

10

两个DataFrame的相同部分:

差集

方法1:concat drop_duplicates

In [5]:

代码语言:javascript复制
df3 = pd.concat([df1,df2])
df3

Out[5]:

col1

col2

0

1

6

1

2

7

2

3

8

3

4

9

4

5

10

0

1

6

1

3

8

2

7

10

In [6]:

代码语言:javascript复制
# 结果1

df3.drop_duplicates(["col1","col2"],keep=False)

Out[6]:

col1

col2

1

2

7

3

4

9

4

5

10

2

7

10

方法2:append drop_duplicates

In [7]:

代码语言:javascript复制
df4 = df1.append(df2)
df4

Out[7]:

col1

col2

0

1

6

1

2

7

2

3

8

3

4

9

4

5

10

0

1

6

1

3

8

2

7

10

In [8]:

代码语言:javascript复制
# 结果2

df4.drop_duplicates(["col1","col2"],keep=False)

Out[8]:

col1

col2

1

2

7

3

4

9

4

5

10

2

7

10

交集

方法1:merge

In [9]:

代码语言:javascript复制
# 结果

# 等效:df5 = pd.merge(df1, df2, how="inner")
df5 = pd.merge(df1,df2)

df5

Out[9]:

col1

col2

0

1

6

1

3

8

方法2:concat duplicated loc

In [10]:

代码语言:javascript复制
df6 = pd.concat([df1,df2])
df6

Out[10]:

col1

col2

0

1

6

1

2

7

2

3

8

3

4

9

4

5

10

0

1

6

1

3

8

2

7

10

In [11]:

代码语言:javascript复制
s = df6.duplicated(subset=['col1','col2'], keep='first')
s

Out[11]:

代码语言:javascript复制
0    False
1    False
2    False
3    False
4    False
0     True
1     True
2    False
dtype: bool

In [12]:

代码语言:javascript复制
# 结果
df8 = df6.loc[s == True]
df8

Out[12]:

col1

col2

0

1

6

1

3

8

方法3:concat groupby query

In [13]:

代码语言:javascript复制
# df6 = pd.concat([df1,df2])

df6

Out[13]:

col1

col2

0

1

6

1

2

7

2

3

8

3

4

9

4

5

10

0

1

6

1

3

8

2

7

10

In [14]:

代码语言:javascript复制
df9 = df6.groupby(["col1", "col2"]).size().reset_index()
df9.columns = ["col1", "col2", "count"]

df9

Out[14]:

col1

col2

count

0

1

6

2

1

2

7

1

2

3

8

2

3

4

9

1

4

5

10

1

5

7

10

1

In [15]:

代码语言:javascript复制
df10 = df9.query("count > 1")[["col1", "col2"]]
df10

Out[15]:

col1

col2

0

1

6

2

3

8

并集

方法1:concat drop_duplicates

In [16]:

代码语言:javascript复制
df11 = pd.concat([df1,df2])
df11

Out[16]:

col1

col2

0

1

6

1

2

7

2

3

8

3

4

9

4

5

10

0

1

6

1

3

8

2

7

10

In [17]:

代码语言:javascript复制
# 结果

# df12 = df11.drop_duplicates(subset=["col1","col2"],keep="last")
df12 = df11.drop_duplicates(subset=["col1","col2"],keep="first")
df12

Out[17]:

col1

col2

0

1

6

1

2

7

2

3

8

3

4

9

4

5

10

2

7

10

方法2:append drop_duplicates

In [18]:

代码语言:javascript复制
df13 = df1.append(df2)

# df13.drop_duplicates(subset=["col1","col2"],keep="last")
df13.drop_duplicates(subset=["col1","col2"],keep="first")

Out[18]:

col1

col2

0

1

6

1

2

7

2

3

8

3

4

9

4

5

10

2

7

10

方法3:merge

In [19]:

代码语言:javascript复制
pd.merge(df1,df2,how="outer")

Out[19]:

col1

col2

0

1

6

1

2

7

2

3

8

3

4

9

4

5

10

5

7

10

1 人点赞