非煤电子封条系统 yolov7

2023-09-09 12:00:00 浏览数 (1)

非煤电子封条系统算法模型通过yolov7 python网络模型技术,非煤电子封条系统算法模型利用智能化AI视频分析,实时监测分析矿井出入井人员人数变化、非煤及煤矿生产作业状态等情况,自动生成、推送报警信息,提示相关人员采取应急措施。本算法模型之所以选用python语音主要是因为Python是一种由Guido van Rossum开发的通用编程语言,它很快就变得非常流行,主要是因为它的简单性和代码可读性。它使程序员能够用更少的代码行表达思想,而不会降低可读性。

虽然在电子封条算法模型中与C / C 等语言相比,Python速度较慢。也就是说,Python可以使用C / C 轻松扩展,这使我们可以在C / C 中编写计算密集型代码,并创建可用作Python模块的Python包装器。这给我们带来了两个好处:首先,代码与原始C / C 代码一样快(因为它是在后台工作的实际C 代码),其次,在Python中编写代码比使用C / C 更容易。OpenCV-Python是原始OpenCV C 实现的Python包装器。

在在电子封条算法模型除了用到python语言外,还用到了YOLOv7网络模型。YOLOv7 的发展方向与当前主流的实时目标检测器不同,研究团队希望它能够同时支持移动 GPU 和从边缘到云端的 GPU 设备。除了架构优化之外,该研究提出的方法还专注于训练过程的优化,将重点放在了一些优化模块和优化方法上。这可能会增加训练成本以提高目标检测的准确性,但不会增加推理成本。研究者将提出的模块和优化方法称为可训练的「bag-of-freebies」。

新的 E-ELAN 完全没有改变原有电子封条算法模型架构的梯度传输路径,其中使用组卷积来增加添加特征的基数(cardinality),并以 shuffle 和 merge cardinality 的方式组合不同组的特征。这种操作方式可以增强不同特征图学得的特征,改进参数的使用和计算效率。无论梯度路径长度和大规模 ELAN 中计算块的堆叠数量如何,它都达到了稳定状态。如果无限堆叠更多的计算块,可能会破坏这种稳定状态,参数利用率会降低。新提出的 E-ELAN 使用 expand、shuffle、merge cardinality 在不破坏原有梯度路径的情况下让网络的学习能力不断增强。

在电子封条算法模型架构方面,E-ELAN 只改变了计算块的架构,而过渡层(transition layer)的架构完全没有改变。YOLOv7 的策略是使用组卷积来扩展计算块的通道和基数。研究者将对计算层的所有计算块应用相同的组参数和通道乘数。然后,每个计算块计算出的特征图会根据设置的组参数 g 被打乱成 g 个组,再将它们连接在一起。此时,每组特征图的通道数将与原始架构中的通道数相同。最后,该方法添加 g 组特征图来执行 merge cardinality。

除了保持原有的 ELAN 设计架构,E-ELAN 还可以引导不同组的电子封条算法模型计算块学习更多样化的特征。因此,对基于串联的模型,我们不能单独分析不同的扩展因子,而必须一起考虑。该研究提出图 (c),即在对基于级联的模型进行扩展时,只需要对计算块中的深度进行扩展,其余传输层进行相应的宽度扩展。这种复合扩展方法可以保持模型在初始设计时的特性和最佳结构。

0 人点赞