人群异常聚集检测告警算法

2023-09-10 13:14:54 浏览数 (1)

人群异常聚集检测告警算法基于yolov5图像识别和数据分析技术,人群异常聚集检测告警算法通过在关键区域布设监控摄像头,实时监测人员的密集程度和行为动态,分析和判断人群密集程度是否超过预设阈值,一旦发现异常聚集,将自动发出信号。人群异常聚集检测告警算法之所以选择YOLO系列框架模型,是因为YOLO系列算法是一类典型的one-stage目标检测算法,其利用anchor box将分类与目标定位的回归问题结合起来,从而做到了高效、灵活和泛化性能好,所以在工业界也十分受欢迎。Yolo算法采用一个单独的CNN模型实现end-to-end的目标检测,核心思想就是利用整张图作为网络的输入,直接在输出层回归 bounding box(边界框) 的位置及其所属的类别。

YOLOv5是一种单阶段目标检测算法,人群异常聚集检测告警算法在YOLOv4的基础上添加了一些新的改进思路,使其速度与精度都得到了极大的性能提升。主要的改进思路如下所示:

输入端:在模型训练阶段,提出了一些改进思路,主要包括Mosaic数据增强、自适应锚框计算、自适应图片缩放;

基准网络:融合其它检测算法中的一些新思路,主要包括:Focus结构与CSP结构;

Neck网络:目标检测网络在BackBone与最后的Head输出层之间往往会插入一些层,Yolov5中添加了FPN PAN结构;

Head输出层:输出层的锚框机制与YOLOv4相同,主要改进的是训练时的损失函数GIOU_Loss,以及预测框筛选的DIOU_nms。

人群异常聚集检测告警算法中在YOLOv5训练模型阶段仍然使用了Mosaic数据增强方法,该算法是在CutMix数据增强方法的基础上改进而来的。CutMix仅仅利用了两张图片进行拼接,而Mosaic数据增强方法则采用了4张图片,并且按照随机缩放、随机裁剪和随机排布的方式进行拼接而成。这种增强方法可以将几张图片组合成一张,这样不仅可以丰富人群异常聚集检测告警算法数据集的同时极大的提升网络的训练速度,而且可以降低模型的内存需求。

0 人点赞