工厂生产作业流程合规检测

2023-09-13 14:22:29 浏览数 (1)

工厂生产作业流程合规检测系统通过yolov7网络模型算法,工厂生产作业流程合规检测对作业人员的操作行为进行全面监测,通过图像识别算法和数据分析,对人员的操作动作、工具使用、安全防护等方面进行检测和评估,能够实时监测工人的操作行为,及时发现并纠正不合规的操作,以确保工厂生产作业的合规性。

工厂生产作业流程合规检测人体行为识别是计算机视觉研究的一个热点,人体行为识别的目标是从一个未知的视频或者是图像序列中自动分析其中正在进行的行为。简单的行为识别即动作分类,给定一段视频,只需将其正确分类到已知的几个动作类别,复杂点的识别是视频中不仅仅只包含一个动作类别,而是有多个,系统需自动的识别出动作的类别以及动作的起始时刻。行为识别的最终目标是分析视频中哪些人在什么时刻什么地方,在干什么事情,即所谓的“W4系统”。

工厂生产作业流程合规检测之所以选择YOLOv7是因为YOLOv7 的发展方向与当前主流的实时目标检测器不同,研究团队希望它能够同时支持移动 GPU 和从边缘到云端的 GPU 设备。除了架构优化之外,该研究提出的方法还专注于训练过程的优化,将重点放在了一些优化模块和优化方法上。这可能会增加训练成本以提高目标检测的准确性,但不会增加推理成本。YOLOv7 的策略是使用组卷积来扩展计算块的通道和基数。研究者将对计算层的所有计算块应用相同的组参数和通道乘数。然后,每个计算块计算出的特征图会根据设置的组参数 g 被打乱成 g 个组,再将它们连接在一起。此时,每组特征图的通道数将与原始架构中的通道数相同。最后,工厂生产作业流程合规检测添加 g 组特征图来执行 merge cardinality。除了保持原有的 ELAN 设计架构,E-ELAN 还可以引导不同组的计算块学习更多样化的特征。

0 人点赞