人员跌倒检测识别预警

2023-09-13 14:30:09 浏览数 (1)

人员跌倒检测识别预警系统通过python opencv深度学习网络模型架构,人员跌倒检测识别预警系统实时监测老人的活动状态,通过图像识别和行为分析算法,对老人的姿态、步态等进行检测和识别,一旦系统检测到跌倒事件,立即发出预警信号,并通知相关人员前往提供援助。人员跌倒检测模型选择使用Python语言。Python是一门解释性脚本语言,是在运行的时候将程序翻译成机器语言;解释型语言的程序不需要在运行前编译,在运行程序的时候才翻译,专门的解释器负责在每个语句执行的时候解释程序代码,所以解释型语言每执行一次就要翻译一次,与之对应的还有编译性语言。

关于人员跌倒视觉上人体运动分析和识别的方法论体系有很多种,将动作从视频序列中人的姿态和运动信息恢复过来,这属于一个回归问题,而人体行为识别是一个分类问题,这2个问题有很多类似点,比如说其特征的提取和描述很多是通用的。将人体行为识别分为3部分,即移动识别(movement),动作识别(action)和行为识别(activity),这3种分类分别于低层视觉,中层视觉,高层视觉相对应。

之所以人员跌倒检测模型使用Python,是因为Python是一种由Guido van Rossum开发的通用编程语言,它很快就变得非常流行,主要是因为它的简单性和代码可读性。它使程序员能够用更少的代码行表达思想,而不会降低可读性。与C / C 等语言相比,Python速度较慢。也就是说,Python可以使用C / C 轻松扩展,这使我们可以在C / C 中编写计算密集型代码,并创建可用作Python模块的Python包装器。这给人员跌倒检测模型带来了两个好处:首先,代码与原始C / C 代码一样快(因为它是在后台工作的实际C 代码),其次,在Python中编写代码比使用C / C 更容易。OpenCV-Python是原始OpenCV C 实现的Python包装器。

0 人点赞