ai课堂行为分析检测评估系统通过yolo网络模型算法,ai课堂行为分析检测评估算法利用摄像头采集学生的图像,视线跟踪技术的智能教学系统由情感模型、教师模型、学生模型和课程模型四个模型组成。用户端的视线及表情信息通过摄像头采集并传递到情感模型情感模型对识别到的表情、行为数据与跟踪得 到的视线所处的知识点处理分析,判断学习者对知识的掌握情况、兴趣与否、专注程度及学习进度,将分析结果一一对应 地传递到学生模型、课程模型、教师模型中,以此为依据对学习内容与学习过程作出相应调整,并及时给予情感补偿。
ai课堂行为分析检测评估算法模型选择Yolo采用卷积网络来提取特征,然后使用全连接层来得到预测值。网络结构参考GooLeNet模型,包含24个卷积层和2个全连接层。对于卷积层,主要使用1x1卷积来做channle reduction,然后紧跟3x3卷积。ai课堂行为分析检测评估算法模型对于卷积层和全连接层,采用Leaky ReLU激活函数:max(x,0.1x)max(x,0.1x)。但是最后一层却采用线性激活函数。除了上面这个结构,文章还提出了一个轻量级版本Fast Yolo,其仅使用9个卷积层,并且卷积层中使用更少的卷积核。
在ai课堂行为分析检测评估YOLO系列算法模型中,针对不同的数据集,都需要设定特定长宽的锚点框。在网络训练阶段,模型在初始锚点框的基础上输出对应的预测框,计算其与GT框之间的差距,并执行反向更新操作,从而更新整个网络的参数,因此设定初始锚点框也是比较关键的一环。在YOLOv3和YOLOv4检测算法中,训练不同的数据集时,都是通过单独的程序运行来获得初始锚点框。ai课堂行为分析检测评估算法模型中将此功能嵌入到代码中,每次训练时,根据数据集的名称自适应的计算出最佳的锚点框,用户可以根据自己的需求将功能关闭或者打开,具体的指令为parser.add_argument(‘–noautoanchor’, action=‘store_ true’, help=‘disable autoanchor check’),如果需要打开,只需要在训练代码时增加–noautoanch or选项即可。