老人摔倒智能识别检测算法

2023-09-15 09:23:41 浏览数 (1)

老人摔倒智能识别检测算法通过yolov8深度学习算法模型架构,老人摔倒智能识别检测算法能够实时监测老人的活动状态及时发现摔倒事件,系统会立即触发告警,向相关人员发送求助信号,减少延误救援的时间。老人摔倒智能识别检测算法训练模型选择YOLOv8 算法的核心特性和改动可以归结为如下:提供了一个全新的 SOTA 模型,包括 P5 640 和 P6 1280 分辨率的目标检测网络和基于 YOLACT 的实例分割模型。和 YOLOv5 一样,基于缩放系数也提供了 N/S/M/L/X 尺度的不同大小模型,用于满足不同场景需求。骨干网络和 Neck 部分可能参考了 YOLOv7 ELAN 设计思想,将 YOLOv5 的 C3 结构换成了梯度流更丰富的 C2f 结构,并对不同尺度模型调整了不同的通道数。

老人摔倒智能识别检测算法 Head部分较yolov5而言有两大改进:1)换成了目前主流的解耦头结构(Decoupled-Head),将分类和检测头分离 2)同时也从 Anchor-Based 换成了 Anchor-Free1) 老人摔倒智能识别检测算法YOLOv8抛弃了以往的IOU匹配或者单边比例的分配方式,而是使用了Task-Aligned Assigner正负样本匹配方式。2)老人摔倒智能识别检测算法引入了 Distribution Focal Loss(DFL)训练的数据增强部分引入了 YOLOX 中的最后 10 epoch 关闭 Mosiac 增强的操作,可以有效地提升精度。

从上面可以看出,老人摔倒智能识别检测算法YOLOv8 主要参考了最近提出的诸如 YOLOX、YOLOv6、YOLOv7 和 PPYOLOE 等算法的相关设计,本身的创新点不多,偏向工程实践,主推的还是 ultralytics 这个框架本身。老人摔倒智能识别检测算法YOLOv8 的训练策略和 YOLOv5 没有啥区别,最大区别就是模型的训练总 epoch 数从 300 提升到了 500,这也导致老人摔倒智能识别检测算法训练时间急剧增加。YOLOv8 的推理过程和 YOLOv5 几乎一样,唯一差别在于前面需要对 Distribution Focal Loss 中的积分表示 bbox 形式进行解码,变成常规的 4 维度 bbox,后续计算过程就和 YOLOv5 一样了。

0 人点赞