工地安全帽识别闸机联动开关

2023-09-15 20:00:53 浏览数 (2)

工地安全帽识别闸机联动开关算法通过yolov7系列网络模型深度学习算法,工地安全帽识别闸机联动开关算法工地安全帽识别闸机联动开关算法对施工人员的人脸、安全帽和反光衣进行识别,判断是否符合安全要求。只有当人脸识别成功且安全帽、反光衣齐全时,闸机才会打开允许施工人员进入。工地安全帽识别闸机联动开关算法目标检测架构分为两种,一种是two-stage,一种是one-stage,区别就在于 two-stage 有region proposal过程,类似于一种海选过程,网络会根据候选区域生成位置和类别,而one-stage直接从图片生成位置和类别。今天提到的 YOLO就是一种 one-stage方法。YOLO是You Only Look Once的缩写,意思是神经网络只需要看一次图片,就能输出结果。

工地安全帽识别闸机联动开关算法算法采用一个单独的CNN模型实现end-to-end的目标检测,整个系统:首先将输入图片resize到448x448,然后送入CNN网络,最后处理网络预测结果得到检测的目标。相比R-CNN算法,其是一个统一的框架,其速度更快,而且Yolo的训练过程也是end-to-end的。很多人可能将Yolo的置信度看成边界框是否含有目标的概率,但是其实它是两个因子的乘积,预测框的准确度也反映在里面。边界框的大小与位置可以用4个值来表征:(x,y,w,h)(x,y,w,h),其中(x,y)(x,y)是边界框的中心坐标,而ww和hh是边界框的宽与高。还有一点要注意,工地安全帽识别闸机联动开关算法中心坐标的预测值(x,y)(x,y)是相对于每个单元格左上角坐标点的偏移值,并且单位是相对于单元格大小的,单元格的坐标定义。而边界框的ww和hh预测值是相对于整个图片的宽与高的比例,这样理论上4个元素的大小应该在[0,1][0,1]范围。这样,每个边界框的预测值实际上包含5个元素:(x,y,w,h,c)(x,y,w,h,c),其中前4个表征边界框的大小与位置,而最后一个值是置信度。

工地安全帽识别闸机联动开关算法YOLOv7 的策略是使用组卷积来扩展计算块的通道和基数。研究者将对计算层的所有计算块应用相同的组参数和通道乘数。然后,每个计算块计算出的特征图会根据设置的组参数 g 被打乱成 g 个组,再将它们连接在一起。此时,工地安全帽识别闸机联动开关算法每组特征图的通道数将与原始架构中的通道数相同。最后,该方法添加 g 组特征图来执行 merge cardinality。除了保持原有的 ELAN 设计架构,E-ELAN 还可以引导不同组的计算块学习更多样化的特征。

0 人点赞