人员着装识别算法

2023-09-16 20:24:17 浏览数 (1)

人员着装识别系统通过yolo网络模型识别算法,人员着装识别系统算法通过现场安装的摄像头识别工厂人员及工地人员是否按要求穿戴着装,实时监测人员的着装情况,并进行相关预警。人员着装识别算法目标检测架构分为两种,一种是two-stage,一种是one-stage,区别就在于 two-stage 有region proposal过程,类似于一种海选过程,网络会根据候选区域生成位置和类别,而one-stage直接从图片生成位置和类别。今天提到的人员着装识别算法 YOLO就是一种 one-stage方法。YOLO是You Only Look Once的缩写,意思是神经网络只需要看一次图片,就能输出结果。

首先先介绍一下滑动窗口技术,这对我们理解Yolo算法是有帮助的。人员着装识别算法采用滑动窗口的目标检测算法思路非常简单,它将检测问题转化为了图像分类问题。其基本原理就是采用不同大小和比例(宽高比)的窗口在整张图片上以一定的步长进行滑动,然后对这些窗口对应的区域做图像分类,这样就可以实现对整张图片的检测了,如下图3所示,如DPM就是采用这种思路。但是这个方法有致命的缺点,就是你并不知道要检测的目标大小是什么规模,所以你要设置不同大小和比例的窗口去滑动,而且还要选取合适的步长。但是这样会产生很多的子区域,并且都要经过分类器去做预测,这需要很大的计算量,所以你的分类器不能太复杂,因为要保证速度。人员着装识别算法解决思路之一就是减少要分类的子区域,这就是R-CNN的一个改进策略,其采用了selective search方法来找到最有可能包含目标的子区域(Region Proposal),其实可以看成采用启发式方法过滤掉很多子区域,这会提升效率。

在进行人员着装识别算法模型训练时,我们需要构造训练样本和设计损失函数,才能利用梯度下降对网络进行训练。将一幅图片输入到yolo模型中,对应的输出是一个7x7x30张量,构建标签label时对于原图像中的每一个网格grid都需要构建一个30维的向量。人员着装识别算法先使用ImageNet数据集对前20层卷积网络进行预训练,然后使用完整的网络,在PASCAL VOC数据集上进行对象识别和定位的训练。Yolo的最后一层采用线性激活函数,其它层都是Leaky ReLU。人员着装识别算法训练中采用了drop out和数据增强(data augmentation)来防止过拟合。

0 人点赞