LeetCode 周赛上分之旅 #45 精妙的 O(lgn) 扫描算法与树上 DP 问题

2023-09-20 14:15:31 浏览数 (1)

⭐️ 本文已收录到 AndroidFamily,技术和职场问题,请关注公众号 [彭旭锐] 和 BaguTree Pro 知识星球提问。 学习数据结构与算法的关键在于掌握问题背后的算法思维框架,你的思考越抽象,它能覆盖的问题域就越广,理解难度也更复杂。在这个专栏里,小彭与你分享每场 LeetCode 周赛的解题报告,一起体会上分之旅。 本文是 LeetCode 上分之旅系列的第 45 篇文章,往期回顾请移步到文章末尾~


T1. 使数组成为递增数组的最少右移次数(Easy)

代码语言:javascript复制
https://leetcode.cn/problems/minimum-right-shifts-to-sort-the-array/description/

题解一(暴力枚举)

简单模拟题。

由于题目数据量非常小,可以把数组复制一份拼接在尾部,再枚举从位置

i

开始长为

n

的连续循环子数组是否连续,是则返回

(n - i)%n

代码语言:javascript复制
class Solution {
    fun minimumRightShifts(nums: MutableList<Int>): Int {
        val n = nums.size
        nums.addAll(nums)
        for (i in 0 until n) {
            if ((i   1 ..< i   n).all { nums[it] > nums[it - 1]}) return (n - i) % n
        }
        return -1
    }
}
代码语言:javascript复制
class Solution:
    def minimumRightShifts(self, nums: List[int]) -> int:
        n = len(nums)
        nums  = nums
        for i in range(0, n):
            if all(nums[j] > nums[j - 1] for j in range(i   1, i   n)):
                return (n - i) % n
        return -1

复杂度分析:

  • 时间复杂度:
O(n^2)

双重循环;

  • 空间复杂度:
O(n)

循环数组空间。

题解二(线性遍历)

更优的写法,我们找到第一个逆序位置,再检查该位置后续位置是否全部为升序,且满足

nums[n - 1] < nums[0]

代码语言:javascript复制
class Solution {
    fun minimumRightShifts(nums: List<Int>): Int {
        val n = nums.size
        for (i in 1 until n) { 
            // 第一段
            if (nums[i] >= nums[i - 1]) continue
            // 第二段
            if (nums[n - 1] > nums[0]) return -1
            for (j in i until n - 1) { 
                if (nums[j] > nums[j   1]) return -1
            }
            return n - i
        }
        return 0
    }
}

复杂度分析:

  • 时间复杂度:
O(n)
i

指针和

j

指针总计最多移动

n

次;

  • 空间复杂度:
O(1)

仅使用常量级别空间。


T2. 删除数对后的最小数组长度(Medium)

代码语言:javascript复制
https://leetcode.cn/problems/minimum-array-length-after-pair-removals/

题解一(二分答案)

问题存在单调性:

  • 当操作次数
k

可以满足时,操作次数

k - 1

一定能满足;

  • 当操作次数
k

不可满足时,操作次数

k 1

一定不能满足。

那么,原问题相当于求解满足目标的最大操作次数。

现在需要考虑的问题是:如何验证操作次数

k

是否可以完成?

一些错误的思路:

  • 尝试 1 - 贪心双指针:
nums[i]

优先使用最小值,

nums[j]

优先使用最大值,错误用例:

[1 2 3 6]

  • 尝试 2 - 贪心:
nums[i]

优先使用最小值,

nums[j]

使用大于

nums[i]

的最小值,错误用例:

[1 2 4 6]

  • 尝试 3 - 贪心: 从后往前遍历,
nums[i]

优先使用较大值,

nums[j]

使用大于

nums[i]

的最小值,错误用例:

[2 3 4 8]

开始转换思路:

能否将数组拆分为两部分,作为 nums[i] 的分为一组,作为

nums[j]

的分为一组。 例如,在用例

[1 2 | 3 6]

[1 2 | 4 6]

[2 3 | 4 8]

中,将数组的前部分作为

nums[i]

而后半部分作为

nums[j]

时,可以得到最优解,至此发现贪心规律。

设数组的长度为

n

,最大匹配对数为

k

  • 结论 1: 使用数组的左半部分作为
nums[i]

且使用数组的右半部分作为

nums[j]

总能取到最优解。反之,如果使用右半部分的某个数

nums[t]

作为

nums[i]

,相当于占用了一个较大的数,不利于后续

nums[i]

寻找配对;

  • 结论 2: 当固定
nums[i]

时,

nums[j]

越小越好,否则会占用一个较大的位置,不利于后续

nums[i]

寻找配对。因此最优解一定是使用左半部分的最小值与右半部分的最小值配对。

总结:如果存在

k

对匹配,那么一定可以让最小的

k

个数和最大的

k

个数匹配。

基于以上分析,可以写出二分答案:

代码语言:javascript复制
class Solution {
    fun minLengthAfterRemovals(nums: List<Int>): Int {
        val n = nums.size
        var left = 0
        var right = n / 2
        while (left < right) {
            val k = (left   right   1) ushr 1
            if ((0 ..< k).all { nums[it] < nums[n - k   it] }) {
                left = k
            } else {
                right = k - 1
            }
        }
        return n - 2 * left
    }
}

复杂度分析:

  • 时间复杂度:
O(nlgn)

二分答案次数最大为

lgn

次,单次检验的时间复杂度是

O(n)

  • 空间复杂度:
O(1)

仅使用常量级别空间。

题解二(双指针)

基于题解一的分析,以及删除操作的上界

n / 2

,我们可以仅使用数组的后半部分与前半部分作比较,具体算法:

  • i 指针指向索引
0
  • j 指针指向索引
(n 1) / 2
  • 向右枚举
j

指针,如果

i

j

指针指向的位置能够匹配,则向右移动

i

指针;

  • 最后
i

指针移动的次数就等于删除操作次数。

代码语言:javascript复制
class Solution {
    fun minLengthAfterRemovals(nums: List<Int>): Int {
        val n = nums.size
        var i = 0
        for (j in (n   1) / 2 until n) {
            if (nums[i] < nums[j]) i  
        }
        return n - 2 * i
    }
}

复杂度分析:

  • 时间复杂度:
O(n)

线性遍历;

  • 空间复杂度:
O(1)

仅使用常量级别空间。

题解三(众数)

由于题目的操作只要满足

nums[i] < nums[j]

,即两个数不相等即可,那么问题的解最终仅取决于数组中的众数的出现次数:

  • 如果众数的出现次数比其他元素少,那么所有元素都能删除,问题的结果就看数组总长度是奇数还是偶数;
  • 否则,剩下的元素就是众数:
s - (n - s)

最后,由于数组是非递减的,因此可以在

O(1)

空间求出众数的出现次数:

代码语言:javascript复制
class Solution {
    fun minLengthAfterRemovals(nums: List<Int>): Int {
        val n = nums.size
        var s = 1
        var cur = 1
        for (i in 1 until n) {
            if (nums[i] == nums[i - 1]) {
                s = max(s,    cur)
            } else {
                cur = 1
            }
        }
        if (s <= n - s) {
            return n % 2
        } else {
            return s - (n - s)
        }
    }
}

复杂度分析:

  • 时间复杂度:
O(n)

线性遍历;

  • 空间复杂度:
O(1)

仅使用常量级别空间。

题解四(找规律 二分查找)

继续挖掘数据规律:

s <= n - s

等价于众数的出现次数超过数组长度的一半,由于数组是有序的,那么一定有数组的中间位置就是众数,我们可以用二分查找找出众数在数组中出现位置的边界,从而计算出众数的出现次数。

由此,我们甚至不需要线性扫描都能计算出众数以及众数的出现次数,Nice!

当然,最后计算出来的出现次数有可能没有超过数组长度的一半。

代码语言:javascript复制
class Solution {
    fun minLengthAfterRemovals(nums: List<Int>): Int {
        val n = nums.size
        val x = nums[n / 2]
        val s = lowerBound(nums, x   1) - lowerBound(nums, x)
        return max(2 * s - n, n % 2)
    }

    fun lowerBound(nums: List<Int>, target: Int): Int {
        var left = 0
        var right = nums.size - 1
        while (left < right) {
            val mid = (left   right   1) ushr 1
            if (nums[mid] >= target) {
                right = mid - 1
            } else {
                left = mid
            }
        }
        return if (nums[left] == target) left else left   1
    }
}

复杂度分析:

  • 时间复杂度:
O(lgn)

单次二分查找的时间复杂度是

O(lgn)

  • 空间复杂度:
O(1)

仅使用常量级别空间。

相似题目:

  • 2576. 求出最多标记下标

T3. 统计距离为 k 的点对(Medium)

代码语言:javascript复制
https://leetcode.cn/problems/count-pairs-of-points-with-distance-k/

题解(散列表)

  • 问题目标:
(x1 xor x2) (y1 xor y2) == k

的方案数;

  • 技巧: 对于存在多个变量的问题,可以考虑先固定其中一个变量;

容易想到两数之和的问题模板,唯一需要思考的问题是如何设计散列表的存取方式:

对于满足

(x1 xor x2) (y1 xor y2) == k

的方案,我们抽象为两部分

i j = k

,其中,

i = (x1 xor x2)

的取值范围为

[0, k]

,而

j = k - i

,即总共有

k 1

种方案。本题的

k

数据范围很小,所以我们可以写出时间复杂度

O(nk)

的算法。

代码语言:javascript复制
class Solution {
    fun countPairs(coordinates: List<List<Int>>, k: Int): Int {
        var ret = 0
        // <x, <y, cnt>>
        val map = HashMap<Int, HashMap<Int, Int>>()
        for ((x2, y2) in coordinates) {
            // 记录方案
            for (i in 0 .. k) {
                if (!map.containsKey(i xor x2)) continue
                ret  = map[i xor x2]!!.getOrDefault((k - i) xor y2, 0)
            }
            // 累计次数
            map.getOrPut(x2) { HashMap<Int, Int>() }[y2] = map[x2]!!.getOrDefault(y2, 0)   1
        }
        return ret
    }
}

Python 计数器支持复合数据类型的建,可以写出非常简洁的代码:

代码语言:javascript复制
class Solution:
    def countPairs(self, coordinates: List[List[int]], k: int) -> int:
        c = Counter()
        ret = 0
        for x2, y2 in coordinates:
            # 记录方案
            for i in range(k   1):
                ret  = c[(i ^ x2, (k - i) ^ y2)]
            # 累计次数
            c[(x2, y2)]  = 1
        return ret

复杂度分析:

  • 时间复杂度:
O(n·k)

线性枚举,每个元素枚举

k

种方案;

  • 空间复杂度:
O(n)

散列表空间。


T4. 可以到达每一个节点的最少边反转次数(Hard)

代码语言:javascript复制
https://leetcode.cn/problems/minimum-edge-reversals-so-every-node-is-reachable/

问题分析

初步分析:

  • 问题目标: 求出以每个节点为根节点时,从根节点到其他节点的反转操作次数,此题属于换根 DP 问题

思考实现:

  • 暴力: 以节点
i

为根节点走一次 BFS/DFS,就可以在

O(n)

时间内求出每个节点的解,整体的时间复杂度是

O(n^2)

思考优化:

  • 重叠子问题: 相邻边连接的节点间存在重叠子问题,当我们从根节点
u

移动到其子节点

v

时,我们可以利用已有信息在

O(1)

时间算出

v

为根节点时的解。

具体实现:

  • 1、随机选择一个点为根节点
u

,在一次 DFS 中根节点

u

的反转操作次数:

  • 2、
u → v

的状态转移:

  • 如果
u → v

是正向边,则反转次数

1

  • 如果
u → v

是反向边,则反转次数

- 1

(从

v

u

不用反转);

  • 3、由于题目是有向图,我们可以转换为无向图,再利用标记位
1

-1

表示边的方向,

1

为正向边,

-1

为反向边。

题解(换根 DP)

代码语言:javascript复制
class Solution {
    fun minEdgeReversals(n: Int, edges: Array<IntArray>): IntArray {
        val dp = IntArray(n)
        val graph = Array(n) { LinkedList<IntArray>() }
        // 建图
        for ((from, to) in edges) {
            graph[from].add(intArrayOf(to, 1))
            graph[to].add(intArrayOf(from, -1))
        }

        // 以 0 为根节点
        fun dfs(i: Int, fa: Int) {
            for ((to, gain) in graph[i]) {
                if (to == fa) continue
                if (gain == -1) dp[0]   
                dfs(to, i)
            }
        }

        fun dp(i: Int, fa: Int) {
            for ((to, gain) in graph[i]) {
                if (to == fa) continue
                // 状态转移
                dp[to] = dp[i]   gain
                dp(to, i)
            }
        }

        dfs(0, -1)
        dp(0, -1)
        
        return dp
    }
}

复杂度分析:

  • 时间复杂度:
O(n)

DFS 和换根 DP 都是

O(n)

  • 空间复杂度:
O(n)

0 人点赞