AI人员打闹监测识别算法通过yolo python网络模型框架算法, AI人员打闹监测识别算法能够准确判断出是否有人员进行打闹行为,算法会立即发出预警信号。Yolo算法,其全称是You Only Look Once: Unified, Real-Time Object Detection,其实个人觉得这个题目取得非常好,AI人员打闹监测识别算法基本上把Yolo算法的特点概括全了:You Only Look Once说的是只需要一次CNN运算,Unified指的是这是一个统一的框架,AI人员打闹监测识别算法提供end-to-end的预测,而Real-Time体现是Yolo算法速度快。
在介绍AI人员打闹监测识别算法之前,首先先介绍一下滑动窗口技术,这对我们理解AI人员打闹监测识别算法Yolo算法是有帮助的。采用滑动窗口的目标检测算法思路非常简单,它将检测问题转化为了图像分类问题。其基本原理就是采用不同大小和比例(宽高比)的窗口在整张图片上以一定的步长进行滑动,然后对这些窗口对应的区域做图像分类,这样就可以实现对整张图片的检测了,如DPM就是采用这种思路。但是这个方法有致命的缺点,就是你并不知道要检测的目标大小是什么规模,所以你要设置AI人员打闹监测识别算法不同大小和比例的窗口去滑动,而且还要选取合适的步长。但是这样会产生很多的子区域,并且都要经过分类器去做预测,这需要很大的计算量,所以你的分类器不能太复杂,因为要保证速度。
代码语言:javascript复制class TransformerLayer(nn.Module):
# Transformer layer (LayerNorm layers removed for better performance)
def __init__(self, c, num_heads): # c: 词特征向量的大小 num_heads 检测头的个数。
super().__init__()
self.q = nn.Linear(c, c, bias=False)# 计算query, in_features=out_features=c
self.k = nn.Linear(c, c, bias=False)# 计算key
self.v = nn.Linear(c, c, bias=False)# 计算value
self.ma = nn.MultiheadAttention(embed_dim=c, num_heads=num_heads) # 多头注意力机制
self.fc1 = nn.Linear(c, c, bias=False)
self.fc2 = nn.Linear(c, c, bias=False)
def forward(self, x):
x = self.ma(self.q(x), self.k(x), self.v(x))[0] x # 多头注意力机制 残差连接
x = self.fc2(self.fc1(x)) x # 两个全连接层 残差连接
return x
上面尽管可以减少滑动窗口的计算量,但是只是针对一个固定大小与步长的窗口,这是远远不够的。AI人员打闹监测识别算法很好的解决了这个问题,它不再是窗口滑动了,而是直接将原始图片分割成互不重合的小方块,然后通过卷积最后生产这样大小的特征图,基于上面的分析,可以认为AI人员打闹监测识别算法特征图的每个元素也是对应原始图片的一个小方块,然后用每个元素来可以预测那些中心点在该小方格内的目标,这就是AI人员打闹监测识别算法的朴素思想。整体来看,AI人员打闹监测识别算法采用一个单独的CNN模型实现end-to-end的目标检测。首先将输入图片resize到448x448,然后送入CNN网络,最后处理网络预测结果得到检测的目标。相比R-CNN算法,其是一个统一的框架,其速度更快,而且Yolo的训练过程也是end-to-end的。
代码语言:javascript复制class TransformerBlock(nn.Module):
def __init__(self, c1, c2, num_heads, num_layers):
super().__init__()
self.conv = None
if c1 != c2:
self.conv = Conv(c1, c2)
self.linear = nn.Linear(c2, c2) # learnable position embedding
self.tr = nn.Sequential(*(TransformerLayer(c2, num_heads) for _ in range(num_layers)))
self.c2 = c2
def forward(self, x): # x:(b,c1,w0,h0)
if self.conv is not None:
x = self.conv(x) # x:(b,c2,w,h)
b, _, w, h = x.shape
p = x.flatten(2).permute(2, 0, 1) # flatten后:(b,c2,w*h) p: (w*h,b,c2)
# linear后: (w*h,b,c2) tr后: (w*h,b,c2) permute后: (b,c2,w*h) reshape后:(b,c2,w,h)
return self.tr(p self.linear(p)).permute(1, 2, 0).reshape(b, self.c2, w, h)