Python 量化投资(一):滑动均值、布林带、MACD、RSI、KDJ、OBV

2023-10-13 09:26:10 浏览数 (2)

滑动均值和标准差

为了更好利用向量化来加速,滑动窗口使用np.lib.stride_tricks.sliding_window_view(x, win)提取,它会返回所有x[i]开头并且长度为win的数组的数组。

代码语言:javascript复制
def rolling(x, win):
    r = np.lib.stride_tricks.sliding_window_view(x, win)
    pad = np.zeros([len(x) - len(r), win]) * np.nan
    return np.vstack([pad, r])
	
def rolling_mean(x, win):
    return rolling(x, win).mean(-1)

def rolling_std(x, win):
    return rolling(x, win).std(-1)

布林带

代码语言:javascript复制
def bollinger(close, win=10, nstd=2):
    means = rolling_mean(close, win)
	stds = rolling_std(close, win)
	upper = means   nstd * stds
	lower = means - nstd * stds
	return upper, means, lower

指数滑动均值

这是原始实现:

代码语言:javascript复制
# 计算指数平滑 
# y[i] = alpha * x[i]   (1 - alpha) * y[i - 1]
def exp_smooth_naive(x, alpha):
    y = x.copy()
    for i in range(1, len(y)):
		y[i] = y[i] * alpha   y[i - 1] * (1 - alpha)
	return y

原始公式是递归的,需要改成通项才能向量化,这是推导过程:

代码语言:javascript复制
y[0] = x[0] = init

y[t] = alpha * x[t]    (1-alpha) * y[t-1]
     = alpha * x[t]    (1-alpha) * alpha * x[t-1]   (1-alpha) ** 2 * y[t-2]
	 = alpha * x[t]    (1-alpha) * alpha * x[t-1]   ...   (1-alpha)** t * init
	 = alpha * x[t]    (1-alpha) * alpha * x[t-1]   ...   alpha * (1-alpha)** t * init   (1 - alpha) ** (t   1) * init
	 = Σ(alpha * (1 - alpha) ** i * x[t-i]; i: 0 -> t)   (1 - alpha) ** (t   1) * init

corr[i] = alpha * (1-alpha) ** i
supl[t] = (1 - alpha) ** (t   1) * init 

y[t] = Σ(corr[i] * x(t-i); i: 0 -> t)   supl[t]
y = conv(corr, x)   supl

这就完成了向量化,因为 NumPy 或者 PyTorch 都针对卷积做了特殊优化。

代码语言:javascript复制
def exp_smooth_vec(x, alpha):
	init, n = x[0], len(x)
	corr =  alpha * (1 - alpha) ** np.arange(0, n)
	supl = (1 - alpha) ** (np.arange(0, n)   1) * init
	y = np.convolve(corr, x, 'full')[:n]   supl
	return y

exp_smooth = exp_smooth_vec

def rolling_ema(x, win):
    x = np.asarray(x)
    alpha = 2 / (win   1.0)
	return exp_smooth(x, alpha)

MACD

代码语言:javascript复制
def macd(close, fast_win=12, slow_win=26, sig_win=9):
	fast = rolling_ema(close, fast_win)
	slow = rolling_ema(close, slow_win)
	dif = fast - slow
	dea = rolling_ema(dif, sig_win)
	macd_ = dif - dea * 2
	return macd_, dif, dea

RSI

代码语言:javascript复制
def rsi(close, win=3):
	change = np.diff(close)
	up = np.where(change > 0, change, 0)
	down = np.where(change < 0, change, 0)
	sum_up = rolling(up, win).sum(-1)
	sum_down = rolling(down, win).sum(-1)
	eps = 1e-12
	rs = sum_up / (sum_down   eps)
	rsi_ = 100 - 100 / (1   rs)
	return np.hstack([[np.nan], rsi_])

KDJ

代码语言:javascript复制
def kdj(close, low, high, n=9):
	hn = rolling(high, n).max(-1)
	ln = rolling(low, n).min(-1)
	rsv = (close - ln) / (hn - ln) * 100
	rsv = [x for x in rsv if not np.isnan(x)]
	rsv = np.hstack([[50], rsv])
	k = exp_smooth(rsv, 2/3)
	d = exp_smooth(k, 2/3)
	j = 3 * k - 2 * d
	pad = [np.nan] * (len(close) - len(k))
	k = np.hstack([pad, k])
	d = np.hstack([pad, d])
	j = np.hstack([pad, j])
	return k, d, j

OBV

代码语言:javascript复制
def obv(close, vol):
	change = np.diff(close)
	sig = np.hstack([[1], np.sign(change)])
	obv_ = np.cumsum(vol * sig)
	return obv_

0 人点赞