在前面的文章中,我们介绍了实现原理和基本环境安装。本文将重点介绍数据训练的流程,以及如何加载、切割、训练数据,并使用向量数据库Milvus进行数据存储。
1. 数据训练依赖于向量数据库
在本文中,我们使用了Milvus作为向量数据库。读者可以参考之前的文章《基于GPT搭建私有知识库聊天机器人(二)环境安装》来准备其他基础环境。
2. 数据训练流程
数据训练的流程包括准备PDF文档、上传至系统文件目录、开始训练、加载文件内容、内容切割和存储至向量数据库。下面是整个流程的流程图:
3. 代码展示
3.1 上传文件至系统文件目录
代码语言:javascript复制@app.route('/upload', methods=['GET', 'POST'])
def index():
if request.method == 'POST':
# 获取文本内容
text = request.form.get('name')
# 获取文件内容
file = request.files.get('file')
if file:
# 保存文件到服务器
filename = file.filename
file.save(os.path.join(KNOWLEDGE_FOLDER, text, filename))
file_path = os.path.join(KNOWLEDGE_FOLDER, text, filename)
else:
file_path = None
return jsonify({'message': '上传成功', 'fileServicePath': file_path})
return render_template('index.html')
3.2 加载文件内容
代码语言:javascript复制# 映射文件加载
LOADER_MAPPING = {
".csv": (CSVLoader, {}),
".docx": (Docx2txtLoader, {}),
".doc": (UnstructuredWordDocumentLoader, {}),
".docx": (UnstructuredWordDocumentLoader, {}),
".enex": (EverNoteLoader, {}),
".eml": (MyElmLoader, {}),
".epub": (UnstructuredEPubLoader, {}),
".html": (UnstructuredHTMLLoader, {}),
".md": (UnstructuredMarkdownLoader, {}),
".odt": (UnstructuredODTLoader, {}),
".pdf": (PDFMinerLoader, {}),
".ppt": (UnstructuredPowerPointLoader, {}),
".pptx": (UnstructuredPowerPointLoader, {}),
".txt": (TextLoader, {"encoding": "utf8"}),
}
def load_single_document(file_path: str) -> List[Document]:
ext = "." file_path.rsplit(".", 1)[-1]
if ext in LOADER_MAPPING:
loader_class, loader_args = LOADER_MAPPING[ext]
loader = loader_class(file_path, **loader_args)
return loader.load()
raise ValueError(f"文件不存在 '{ext}'")
# 加载文件
def load_documents_knowledge(source_dir: str, secondary_directories: str) -> List[Document]:
"""
Loads all documents from the source documents directory, ignoring specified files
"""
all_files = []
for ext in LOADER_MAPPING:
all_files.extend(
glob.glob(os.path.join(source_dir, secondary_directories, f"**/*{ext}"), recursive=True)
)
filtered_files = [file_path for file_path in all_files if file_path]
with Pool(processes=os.cpu_count()) as pool:
results = []
with tqdm(total=len(filtered_files), desc='Loading new documents', ncols=80) as pbar:
for i, docs in enumerate(pool.imap_unordered(load_single_document, filtered_files)):
results.extend(docs)
pbar.update()
return results
3.3 内容切割
代码语言:javascript复制text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
texts = text_splitter.split_documents(documents)
3.4 存储至向量数据库
代码语言:javascript复制Milvus.from_documents(
texts,
collection_name=collection_name,
embedding=embeddings,
connection_args={"host": MILVUS_HOST, "port": MILVUS_PORT}
)
3.5 全部代码
代码语言:javascript复制#!/usr/bin/env python3
import glob
import os
import shutil
from multiprocessing import Pool
from typing import List
from dotenv import load_dotenv
from langchain.docstore.document import Document
from langchain.document_loaders import (
CSVLoader,
EverNoteLoader,
PDFMinerLoader,
TextLoader,
UnstructuredEmailLoader,
UnstructuredEPubLoader,
UnstructuredHTMLLoader,
UnstructuredMarkdownLoader,
UnstructuredODTLoader,
UnstructuredPowerPointLoader,
UnstructuredWordDocumentLoader, )
from langchain.embeddings import OpenAIEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Milvus
from tqdm import tqdm
load_dotenv(".env")
MILVUS_HOST = os.environ.get('MILVUS_HOST')
MILVUS_PORT = os.environ.get('MILVUS_PORT')
source_directory = os.environ.get('SOURCE_DIRECTORY', 'source_documents')
KNOWLEDGE_FOLDER = os.environ.get('KNOWLEDGE_FOLDER')
KNOWLEDGE_FOLDER_BK = os.environ.get('KNOWLEDGE_FOLDER_BK')
chunk_size = 500
chunk_overlap = 50
# Custom document loaders
class MyElmLoader(UnstructuredEmailLoader):
"""在默认值不起作用时回退到文本纯"""
def load(self) -> List[Document]:
"""EMl没有 html 使用text/plain"""
try:
try:
doc = UnstructuredEmailLoader.load(self)
except ValueError as e:
if 'text/html content not found in email' in str(e):
# Try plain text
self.unstructured_kwargs["content_source"] = "text/plain"
doc = UnstructuredEmailLoader.load(self)
else:
raise
except Exception as e:
# Add file_path to exception message
raise type(e)(f"{self.file_path}: {e}") from e
return doc
# 映射文件加载
LOADER_MAPPING = {
".csv": (CSVLoader, {}),
# ".docx": (Docx2txtLoader, {}),
".doc": (UnstructuredWordDocumentLoader, {}),
".docx": (UnstructuredWordDocumentLoader, {}),
".enex": (EverNoteLoader, {}),
".eml": (MyElmLoader, {}),
".epub": (UnstructuredEPubLoader, {}),
".html": (UnstructuredHTMLLoader, {}),
".md": (UnstructuredMarkdownLoader, {}),
".odt": (UnstructuredODTLoader, {}),
".pdf": (PDFMinerLoader, {}),
".ppt": (UnstructuredPowerPointLoader, {}),
".pptx": (UnstructuredPowerPointLoader, {}),
".txt": (TextLoader, {"encoding": "utf8"}),
}
def load_single_document(file_path: str) -> List[Document]:
ext = "." file_path.rsplit(".", 1)[-1]
if ext in LOADER_MAPPING:
loader_class, loader_args = LOADER_MAPPING[ext]
loader = loader_class(file_path, **loader_args)
return loader.load()
raise ValueError(f"文件不存在 '{ext}'")
def load_documents_knowledge(source_dir: str, secondary_directories: str) -> List[Document]:
"""
Loads all documents from the source documents directory, ignoring specified files
"""
all_files = []
for ext in LOADER_MAPPING:
all_files.extend(
glob.glob(os.path.join(source_dir, secondary_directories, f"**/*{ext}"), recursive=True)
)
filtered_files = [file_path for file_path in all_files if file_path]
with Pool(processes=os.cpu_count()) as pool:
results = []
with tqdm(total=len(filtered_files), desc='Loading new documents', ncols=80) as pbar:
for i, docs in enumerate(pool.imap_unordered(load_single_document, filtered_files)):
results.extend(docs)
pbar.update()
return results
def process_documents_knowledge(secondary_directories: str) -> List[Document]:
"""
加载文档并拆分为块
"""
print(f"加载文件目录: {KNOWLEDGE_FOLDER}")
documents = load_documents_knowledge(KNOWLEDGE_FOLDER, secondary_directories)
if not documents:
print("没有文件需要加载")
exit(0)
print(f"加载 {len(documents)} 文件从 {KNOWLEDGE_FOLDER}")
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
texts = text_splitter.split_documents(documents)
print(f"切割 {len(texts)} 文本块 (最大. {chunk_size} tokens 令牌)")
return texts
def main_knowledge(collection_name: str):
# Create embeddings
embeddings = OpenAIEmbeddings()
texts = process_documents_knowledge(collection_name)
Milvus.from_documents(
texts,
collection_name=collection_name,
embedding=embeddings,
connection_args={"host": MILVUS_HOST, "port": MILVUS_PORT}
)
4. 总结
在本文中,我们详细介绍了基于GPT搭建私有知识库聊天机器人的数据训练过程,包括数据训练的依赖、流程和代码展示。数据训练是搭建聊天机器人的重要步骤,希望本文能对读者有所帮助。在下一篇文章中,我们将介绍如何使用训练好的模型进行聊天机器人的测试和使用。