一、原理
spark-submit --files通常用来加载外部资源文件,在driver和executor进程中进行访问
–files和–jars基本相同
二、使用步骤
2.1 添加文件
spark-submit --files file_paths
其中file_paths可为多种方式:file: | hdfs:// | http:// | ftp:// | local:(多个路径用逗号隔开
)
spark-submit
--master yarn
--deploy-mode cluster
--principal xxx.com
--keytab /xxx/keytabs/xxx.keytab
--driver-java-options "-Dspring.profiles.active=prod -Dorg.springframework.boot.logging.LoggingSystem=none -Djava.ext.dirs=/xxx/CDH-x.x.x-1.cdhx.x.x.p0.xxx/lib/spark/jars/gson-2.8.1.jar,/xxx/CDH-x.x.x-1.cdhx.1.1.p0.xxx/lib/hive/lib/* -Dspark.yarn.dist.files=/xxx/CDH-x.1.1-1.cdhx.1.1.p0.xxx/etc/hadoop/conf.dist/yarn-site.xml"
--driver-class-path "/xxx/CDH-x.x.x-x.cdhx.x.x.p1000.xxx/jars/gson-2.8.1.jar:$JAVA_HOME/jre/lib/ext/*:/xxx/CDH-x.x.x-1.cdhx.x.x.p1000.xxx/jars/commons-cli-1.4.jar"
--driver-cores $dc
--driver-memory $dm
--num-executors $ne
--executor-cores $ec
--executor-memory $em
--conf spark.sql.crossJoin.enabled=true
--conf spark.dynamicAllocation.enabled=false
--conf spark.yarn.maxAppAttempts=1
--conf spark.driver.maxResultSize=20G
--conf spark.sql.shuffle.partitions=$partitions
--conf spark.default.parallelism=$partitions
--conf spark.sql.adaptive.enabled=true
--conf spark.sql.adaptive.shuffle.targetPostShuffleInputSize=128000000
--conf spark.yarn.queue=xxx
--conf spark.shuffle.io.maxRetries=200
--conf spark.shuffle.io.retryWait=30
--conf spark.port.maxRetries=120
--conf spark.core.connection.ack.wait.timeout=6000
--conf spark.shuffle.sort.bypassMergeThreshold=300
--conf spark.hadoop.hive.exec.dynamic.partition=$dp
--conf spark.hadoop.hive.exec.dynamic.partition.mode=nonstrict
--conf spark.hadoop.hive.exec.max.dynamic.partitions=2000
--name $name
--files "$files" #/path/服务器本地文件
--class xxxApplication /xxx/xxx-1.0-SNAPSHOT.jar -jn $obj -sq "$sql" -ptby $ptby
2.2 获取文件
2.2.1 方案一
代码语言:javascript复制//If you add your external files using "spark-submit --files" your files will be uploaded to this HDFS folder: hdfs://your-cluster/user/your-user/.sparkStaging/application_1449220589084_0508
//application_1449220589084_0508 is an example of yarn application ID!
//1. find the spark staging directory by below code: (but you need to have the hdfs uri and your username)
System.getenv("SPARK_YARN_STAGING_DIR"); --> .sparkStaging/application_1449220589084_0508
//2. find the complete comma separated file paths by using:
System.getenv("SPARK_YARN_CACHE_FILES"); -->
hdfs://yourcluster/user/hdfs/.sparkStaging/application_1449220589084_0508/spark-assembly-1.4.1.2.3.2.0-2950-hadoop2.7.1.2.3.2.0-2950.jar#__spark__.jar,
hdfs://yourcluster/user/hdfs/.sparkStaging/application_1449220589084_0508/your-spark-job.jar#__app__.jar,
hdfs://yourcluster/user/hdfs/.sparkStaging/application_1449220589084_0508/test_file.txt#test_file.txt
--files会把文件上传到hdfs的.sparkStagin/applicationId目录下。
spark.read().textFile(System.getenv("SPARK_YARN_STAGING_DIR") "/xxx.xxx")
textFile不指定hdfs、file或者其他前缀的话默认是hdfs://yourcluster/user/your_username下的相对路径。
2.2.2 方案二 SparkFiles.get(fileName)
SparkFiles.get(fileName)
适用于local模式
JavaRDD<String> stringJavaRDD = sparkcontext.textFile(SparkFiles.get(fileName));
List<String> collect = stringJavaRDD.collect();
[注意事项]
在cluster模式下(-- deploy-mode cluster ),-- files必须使用全局可视的地址(比如hdfs),否则driver将无法找到文件,出现FileNotFoundException。这是因为driver会在集群中任意一台worker节点上运行,使用本地地址无法找到文件。FileNotFoundException异常出现在SparkSession的getOrCreate()初始化方法中,因为此方法会调用addFile(),但是确找不到文件,导致SparkSession初始化失败。注意:–jars原理相同,但是getOrCreate()中调用addJars出现异常,但是并不会导SparkSession初始化失败,程序会继续运行。
值得一提的是,在cluster模式下,spark-submit --deploy-mode cluster path-to-jar,其中path-to-jar也必须是全局可视路径,否则会发生找不到jar的异常。
2.2.3 方案三 new FileInputStream(fileName)
代码语言:javascript复制FileInputStream sqlstream = new FileInputStream(fileName);
StringBuilder sqlContent = new StringBuilder();
Scanner scanner = new Scanner(sqlstream, "UTF-8");
while (scanner.hasNextLine()) {
String line = scanner.nextLine();
sqlContent.append(line).append("n");
}
适用于local、yarn client、yarn cluster模式
,
2.2.4 方案四
代码语言:javascript复制Properties properties = new Properties();
properties.load(Thread.currentThread().getContextClassLoader().getResourceAsStream("test.properties"));
适应于yarn、cluster模式