【数理逻辑】谓词逻辑 ( 判断一阶谓词逻辑公式真假 | 解释 | 示例 | 谓词逻辑公式类型 | 永真式 | 永假式 | 可满足式 | 等值式 )

2023-03-28 17:45:46 浏览数 (1)

文章目录

  • 一、 判断谓词逻辑公式真假 ( 语义 )
  • 二、 谓词逻辑 "解释"
  • 三、 谓词逻辑 "解释" 示例
  • 四、 谓词逻辑公式类型

一、 判断谓词逻辑公式真假 ( 语义 )


谓词逻辑 语法 与 语义 :

语法 : 上面两节讲解的是 谓词逻辑 的公式 , 如何 根据陈述句描述写出公式 , 是 语法 范畴 ;

语义 : 写出的公式如何 判定其真假 , 属于 语义 范畴 ;

判定公式真假 :

  • 命题逻辑 : 命题逻辑中 , 通过给命题变元赋值 , 并且根据联结词规则计算 , 最终得到真值 , 这个过程叫做 赋值 ;
  • 一阶谓词逻辑 : 一阶谓词逻辑中 , 使用 “解释” 方法 , 判定一个公式的真假 ;

二、 谓词逻辑 “解释”


解释 :

给定 谓词逻辑 公式

A

, 该公式

A

由 个体词 , 谓词 , 量词 组成 ;

个体域 : 指定 公式

A

的 个体域 为 已知 个体域

D

;

个体词 : 使用特定的 个体常元 取代

A

中的 个体词 ;

函数 : 使用 特定的函数 , 取代

A

中的 函数变元 ;

谓词 : 使用 特定的 谓词 , 取代

A

中的 谓词变元 ;

执行完上述操作后 , 即可得到

A

公式的一个 “解释” ;

赋值 与 解释 :

赋值 : 赋值 是 给命题逻辑的 命题变元 取

0 , 1

真假值 ;

解释 : 解释 是 给 个体词 在个体域中 指定是哪个个体 , 给 谓词 指定具体的性质或关系 , 给 量词 指定 个体域 判定其范围 , 确定了 个体词 , 谓词 , 量词 , 就可以判定公式的真假 ;

给定一个 谓词逻辑 公式 , 给出一个 解释 , 就可以 判定其真假 ;

同一个 谓词逻辑 公式 , 可以有 不同的解释 ;

  • 个体 指定 不同的 个体
  • 谓词 指定 不同的 性质或关系
  • 量词 使用不同的 个体域 进行解释 ;

三、 谓词逻辑 “解释” 示例


给定 一阶谓词逻辑 公式

A

forall x ( F(x) to G(x) )

, 有以下多种解释 ;

解释一 :

个体域 : 实数集合 ;

F(x)

:

x

是有理数 ;

G(x)

:

x

是分数 ;

此时公式

A

可以解释成 : 有理数都能表示成分数 ;

此时该解释对应的命题是 真命题 ;

解释二 :

个体域 : 全总个体域 ;

F(x)

:

x

是人 ;

G(x)

:

x

头发是黑色的 ;

此时公式

A

可以解释成 : 人都是黑头发的 ;

此时该解释对应的命题是 假命题 ;

四、 谓词逻辑公式类型


谓词逻辑 公式 , 有了解释之后 , 就可以判断公式的类型 ;

谓词逻辑 公式类型分为 永真式 , 永假式 , 可满足式 , 等值式 等 ;

  • 永真式 : 公式
A

在 任何解释下都为真 ;

  • 永假式 : 公式
A

在 任何解释下都为假 ;

  • 可满足式 : 公式
A

至少存在一个成真的解释 ;

  • 等价式 : 如果
A leftrightarrow B

是永真式 , 则公式

A

B

是等值的 , 记作

A Leftrightarrow B

, 称

A Leftrightarrow B

是等值式 ;

0 人点赞