值班脱岗智能监测识别系统通过python yolo网络模型深度学习算法技术,值班脱岗智能监测识别系统对重要区域岗位状态等进行7*24小时不间断实时监测,当超过后台规定时间没有人员在规定区域,无需人为干预立即抓拍告警。目标检测架构分为两种,一种是two-stage,一种是one-stage,区别就在于 two-stage 有region proposal过程,类似于一种海选过程,网络会根据候选区域生成位置和类别,而one-stage直接从图片生成位置和类别。今天提到的 YOLO就是一种 one-stage方法。YOLO是You Only Look Once的缩写,意思是神经网络只需要看一次图片,就能输出结果。
YOLO是一个聪明的卷积神经网络(CNN),用于实时进行目标检测。该算法将单个神经网络应用于完整的图像,然后将图像划分为多个区域,并预测每个区域的边界框和概率。这些边界框是由预测的概率加权的。要理解YOLO,我们首先要分别理解这两个模型。YOLO算法- YOLO算法是一种基于回归的算法,它不是选择图像中有趣的部分,而是预测整个图像中的类和包围框运行一次算法。要理解YOLO算法,我们首先需要了解实际预测的是什么。最终,我们的目标是预测一类对象和指定对象位置的边界框。
YOLO不会在输入图像中搜索可能包含对象的感兴趣区域,而是将图像分割成单元格,通常是19×19网格。每个细胞负责预测K个包围框。具有最大概率的类被选择并分配给特定的网格单元。类似的过程发生在图像中的所有网格单元格上。在预测类概率后,下一步进行非最大抑制,这有助于算法消除不必要的锚点。一旦完成,算法就会找到具有下一个最高类别概率的包围框,并进行相同的过程,直到我们剩下所有不同的包围框为止。在此之后,我们几乎完成了所有的工作,算法最终输出所需的向量,显示各个类的包围框的细节。