学习小组day6笔记-R包

2023-04-13 19:29:36 浏览数 (1)

今天学习R包实操,以dplyr为例 思维导图:R包dplyr的应用R包dplyr的应用

实操部分

1.安装和加载R包,准备示例数据

代码语言:txt复制
#设置镜像、安装加载
options("repos" = c(CRAN="https://mirrors.tuna.tsinghua.edu.cn/CRAN/")) 
options(BioC_mirror="https://mirrors.ustc.edu.cn/bioc/") 
install.packages("dplyr")
library(dplyr)
#使用内置数据集iris的简化版作为示例数据
test <- iris[c(1:2,51:52,101:102),]
test
    Sepal.Length Sepal.Width Petal.Length Petal.Width    Species
1            5.1         3.5          1.4         0.2     setosa
2            4.9         3.0          1.4         0.2     setosa
51           7.0         3.2          4.7         1.4 versicolor
52           6.4         3.2          4.5         1.5 versicolor
101          6.3         3.3          6.0         2.5  virginica
102          5.8         2.7          5.1         1.9  virginica

2.练习dplyr五个基础函数

代码语言:txt复制
# 1. mutate(), 新增列
mutate(test, new = Sepal.Length * Sepal.Width)
    Sepal.Length Sepal.Width Petal.Length Petal.Width    Species   new
1            5.1         3.5          1.4         0.2     setosa 17.85
2            4.9         3.0          1.4         0.2     setosa 14.70
51           7.0         3.2          4.7         1.4 versicolor 22.40
52           6.4         3.2          4.5         1.5 versicolor 20.48
101          6.3         3.3          6.0         2.5  virginica 20.79
102          5.8         2.7          5.1         1.9  virginica 15.66
# 2. select(), 按列筛选
select(test,c(1,5))
    Sepal.Length    Species
1            5.1     setosa
2            4.9     setosa
51           7.0 versicolor
52           6.4 versicolor
101          6.3  virginica
102          5.8  virginica
select(test,1)
    Sepal.Length
1            5.1
2            4.9
51           7.0
52           6.4
101          6.3
102          5.8
select(test,Sepal.Length)
    Sepal.Length
1            5.1
2            4.9
51           7.0
52           6.4
101          6.3
102          5.8
select(test, vars)
Note: Using an external vector in selections is ambiguous.
i Use `all_of(vars)` instead of `vars` to silence this message.
i See <https://tidyselect.r-lib.org/reference/faq-external-vector.html>.
This message is displayed once per session.
    Petal.Length Petal.Width
1            1.4         0.2
2            1.4         0.2
51           4.7         1.4
52           4.5         1.5
101          6.0         2.5
102          5.1         1.9
select(test, one_of(vars))
    Petal.Length Petal.Width
1            1.4         0.2
2            1.4         0.2
51           4.7         1.4
52           4.5         1.5
101          6.0         2.5
102          5.1         1.9
补充说明:

all_of(): Matches variable names in a character vector. All names must be present, otherwise an out-of-bounds error is thrown.

any_of(): Same asall_of() , except that no error is thrown for names that don't exist.

one_of(c("foo", "bar")): Selects "foo" first.

代码语言:txt复制
# 3. filter(), 按行筛选
filter(test, Species == "setosa")
  Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1          5.1         3.5          1.4         0.2  setosa
2          4.9         3.0          1.4         0.2  setosa

filter(test,Species == "setosa" & Sepal.Length > 5)
  Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1          5.1         3.5          1.4         0.2  setosa

filter(test,Species %in% c("setosa","versicolor"))
  Sepal.Length Sepal.Width Petal.Length Petal.Width    Species
1          5.1         3.5          1.4         0.2     setosa
2          4.9         3.0          1.4         0.2     setosa
3          7.0         3.2          4.7         1.4 versicolor
4          6.4         3.2          4.5         1.5 versicolor

#4. arrange(), 按某1列或某几列对整个表格进行排序
arrange(test, Sepal.Length)#从小到大排序
  Sepal.Length Sepal.Width Petal.Length Petal.Width    Species
1          4.9         3.0          1.4         0.2     setosa
2          5.1         3.5          1.4         0.2     setosa
3          5.8         2.7          5.1         1.9  virginica
4          6.3         3.3          6.0         2.5  virginica
5          6.4         3.2          4.5         1.5 versicolor
6          7.0         3.2          4.7         1.4 versicolor

arrange(test, desc(Sepal.Length))#用desc从大到小
  Sepal.Length Sepal.Width Petal.Length Petal.Width    Species
1          7.0         3.2          4.7         1.4 versicolor
2          6.4         3.2          4.5         1.5 versicolor
3          6.3         3.3          6.0         2.5  virginica
4          5.8         2.7          5.1         1.9  virginica
5          5.1         3.5          1.4         0.2     setosa
6          4.9         3.0          1.4         0.2     setosa
# 5.summarise(),汇总
summarise(test, mean(Sepal.Length),sd(Sepal.Length)) #计算Sepal.Length的平均值和标准差
  mean(Sepal.Length) sd(Sepal.Length)
1           5.916667        0.8084965

group_by(test,Species) 
# A tibble: 6 x 5
# Groups:   Species [3]
  Sepal.Length Sepal.Width Petal.Length Petal.Width Species   
         <dbl>       <dbl>        <dbl>       <dbl> <fct>     
1          5.1         3.5          1.4         0.2 setosa    
2          4.9         3            1.4         0.2 setosa    
3          7           3.2          4.7         1.4 versicolor
4          6.4         3.2          4.5         1.5 versicolor
5          6.3         3.3          6           2.5 virginica 
6          5.8         2.7          5.1         1.9 virginica 
#先按照Species分组,再计算每组Sepal.Length的平均值和标准差
summarise(group_by(test, Species),mean(Sepal.Length), sd(Sepal.Length))
# A tibble: 3 x 3
  Species    `mean(Sepal.Length)` `sd(Sepal.Length)`
  <fct>                     <dbl>              <dbl>
1 setosa                     5                 0.141
2 versicolor                 6.7               0.424
3 virginica                  6.05              0.354

3.管道操作和统计某列unique值

代码语言:txt复制
#1. 管道操作 %>% (cmd/ctr   shift   M)
test %>% 
    group_by(Species) %>% 
    summarise(mean(Sepal.Length), sd(Sepal.Length))
# A tibble: 3 x 3
  Species    `mean(Sepal.Length)` `sd(Sepal.Length)`
  <fct>                     <dbl>              <dbl>
1 setosa                     5                 0.141
2 versicolor                 6.7               0.424
3 virginica                  6.05              0.354
#2. count 统计某一列中不重复的数据以及其个数
count(test, Species)
     Species n
1     setosa 2
2 versicolor 2
3  virginica 2

4.dplyr处理关系数据

代码语言:txt复制
> options(stringsAsFactors = F) #在读入数据时,遇到字符串之后,不将其转换为factors,仍然保留为字符串格式
> 
> test1 <- data.frame(x = c('b','e','f','x'), 
                      z = c("A","B","C",'D'),
                      stringsAsFactors = F)
> test1
  x z
1 b A
2 e B
3 f C
4 x D
> test2 <- data.frame(x = c('a','b','c','d','e','f'), 
                      y = c(1,2,3,4,5,6),
                      stringsAsFactors = F)
> test2 
  x y
1 a 1
2 b 2
3 c 3
4 d 4
5 e 5
6 f 6
> inner_join(test1, test2, by = "x")#內连inner_join,取交集
  x z y
1 b A 2
2 e B 5
3 f C 6
> left_join(test1, test2, by = 'x')#左连left_join
  x z  y
1 b A  2
2 e B  5
3 f C  6
4 x D NA
> left_join(test2, test1, by = 'x')
  x y    z
1 a 1 <NA>
2 b 2    A
3 c 3 <NA>
4 d 4 <NA>
5 e 5    B
6 f 6    C
> full_join( test1, test2, by = 'x')#全连full_join
  x    z  y
1 b    A  2
2 e    B  5
3 f    C  6
4 x    D NA
5 a <NA>  1
6 c <NA>  3
7 d <NA>  4
> semi_join(x = test1, y = test2, by = 'x')#半连接:返回能够与y表匹配的x表所有记录semi_join
  x z
1 b A
2 e B
3 f C
> anti_join(x = test2, y = test1, by = 'x')#反连接:返回无法与y表匹配的x表的所记录anti_join
  x y
1 a 1
2 c 3
3 d 4
> test1 <- data.frame(x = c(1,2,3,4), y = c(10,20,30,40))
> test1
  x  y
1 1 10
2 2 20
3 3 30
4 4 40
> test2 <- data.frame(x = c(5,6), y = c(50,60))
> test2
  x  y
1 5 50
2 6 60
> test3 <- data.frame(z = c(100,200,300,400))
> test3
    z
1 100
2 200
3 300
4 400
> bind_rows(test1, test2)#需要两个表格列数相同
  x  y
1 1 10
2 2 20
3 3 30
4 4 40
5 5 50
6 6 60
> bind_cols(test1, test3)#需要两个表格行数相同
  x  y   z
1 1 10 100
2 2 20 200
3 3 30 300
4 4 40 400

0 人点赞