TensorFlow 机器学习秘籍第二版:9~11

2023-04-23 11:26:36 浏览数 (1)

九、循环神经网络

在本章中,我们将介绍循环神经网络(RNN)以及如何在 TensorFlow 中实现它们。我们将首先演示如何使用 RNN 来预测垃圾邮件。然后,我们将介绍一种用于创建莎士比亚文本的 RNN 变体。我们将通过创建 RNN 序列到序列模型来完成从英语到德语的翻译:

  • 实现 RNN 以进行垃圾邮件预测
  • 实现 LSTM 模型
  • 堆叠多个 LSTM 层
  • 创建序列到序列模型
  • 训练 Siamese 相似性度量

本章的所有代码都可以在 Github 和 Packt 在线仓库。

介绍

在迄今为止我们考虑过的所有机器学习算法中,没有人将数据视为序列。为了考虑序列数据,我们扩展了存储先前迭代输出的神经网络。这种类型的神经网络称为 RNN。考虑完全连接的网络秘籍:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-vudzH71V-1681566911072)(https://gitcode.net/apachecn/apachecn-dl-zh/-/raw/master/docs/tf-ml-cookbook-2e-zh/img/ab01cacf-e47e-4b82-90eb-09d12f96d06c.png)]

这里,权重由A乘以输入层x给出,然后通过激活函数σ,给出输出层y

如果我们有一系列输入数据x[1], x[2], x[3], ...,我们可以调整完全连接的层以考虑先前的输入,如下所示:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-FXsqi8vC-1681566911073)(https://gitcode.net/apachecn/apachecn-dl-zh/-/raw/master/docs/tf-ml-cookbook-2e-zh/img/fe9f65c6-64fa-4fcc-854b-c1fae403ead8.png)]

在此循环迭代之上获取下一个输入,我们希望得到概率分布输出,如下所示:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-005reKSH-1681566911073)(https://gitcode.net/apachecn/apachecn-dl-zh/-/raw/master/docs/tf-ml-cookbook-2e-zh/img/e5a295eb-90c3-410e-877a-dc830cac4504.png)]

一旦我们有一个完整的序列输出{S[1], S[2], S[3], ...},我们可以通过考虑最后的输出将目标视为数字或类别。有关通用架构的工作原理,请参见下图:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-4nm7zjrS-1681566911073)(https://gitcode.net/apachecn/apachecn-dl-zh/-/raw/master/docs/tf-ml-cookbook-2e-zh/img/1a80edbf-b1dc-47fc-a328-f4973493e260.png)]

图 1:为了预测单个数字或类别,我们采用一系列输入(标记)并将最终输出视为预测输出

我们还可以将序列输出视为序列到序列模型中的输入:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-p2wFlLb1-1681566911073)(https://gitcode.net/apachecn/apachecn-dl-zh/-/raw/master/docs/tf-ml-cookbook-2e-zh/img/2b10596a-93d9-42b5-acdb-71e661e49650.png)]

图 2:为了预测序列,我们还可以将输出反馈到模型中以生成多个输出

对于任意长序列,使用反向传播算法进行训练会产生长时间相关的梯度。因此,存在消失或爆炸的梯度问题。在本章的后面,我们将通过将 RNN 单元扩展为所谓的长短期记忆(LSTM)单元来探索该问题的解决方案。主要思想是 LSTM 单元引入另一个操作,称为门,它控制通过序列的信息流。我们将在后面的章节中详细介绍。

在处理 NLP 的 RNN 模型时,编码是用于描述将数据(NLP 中的字或字符)转换为数字 RNN 特征的过程的术语。术语解码是将 RNN 数字特征转换为输出字或字符的过程。

为垃圾邮件预测实现 RNN

首先,我们将应用标准 RNN 单元来预测奇异数值输出,即垃圾邮件概率。

准备

在此秘籍中,我们将在 TensorFlow 中实现标准 RNN,以预测短信是垃圾邮件还是非垃圾邮件。我们将使用 UCI 的 ML 仓库中的 SMS 垃圾邮件收集数据集。我们将用于预测的架构将是来自嵌入文本的输入 RNN 序列,我们将最后的 RNN 输出作为垃圾邮件或非垃圾邮件(1 或 0)的预测。

操作步骤

  1. 我们首先加载此脚本所需的库:
代码语言:javascript复制
import os 
import re 
import io 
import requests 
import numpy as np 
import matplotlib.pyplot as plt 
import tensorflow as tf 
from zipfile import ZipFile 
  1. 接下来,我们启动图会话并设置 RNN 模型参数。我们将通过20周期以250的批量大小运行数据。我们将考虑的每个文本的最大长度是25字;我们将更长的文本剪切为25或零填充短文本。 RNN 将是10单元。我们只考虑在词汇表中出现至少 10 次的单词,并且每个单词都将嵌入到可训练的大小50中。丢弃率将是我们可以在训练期间0.5或评估期间1.0设置的占位符:
代码语言:javascript复制
sess = tf.Session() 
epochs = 20 
batch_size = 250 
max_sequence_length = 25 
rnn_size = 10 
embedding_size = 50 
min_word_frequency = 10 
learning_rate = 0.0005 
dropout_keep_prob = tf.placeholder(tf.float32) 
  1. 现在我们获取 SMS 文本数据。首先,我们检查它是否已经下载,如果是,请在文件中读取。否则,我们下载数据并保存:
代码语言:javascript复制
data_dir = 'temp' 
data_file = 'text_data.txt' 
if not os.path.exists(data_dir): 
   os.makedirs(data_dir) 
if not os.path.isfile(os.path.join(data_dir, data_file)): 
    zip_url = 'http://archive.ics.uci.edu/ml/machine-learning-databases/00228/smsspamcollection.zip' 
    r = requests.get(zip_url) 
    z = ZipFile(io.BytesIO(r.content)) 
    file = z.read('SMSSpamCollection') 
    # Format Data 
    text_data = file.decode() 
    text_data = text_data.encode('ascii',errors='ignore') 
    text_data = text_data.decode().split('n') 
    # Save data to text file 
    with open(os.path.join(data_dir, data_file), 'w') as file_conn: 
        for text in text_data: 
            file_conn.write("{}n".format(text)) 
else: 
    # Open data from text file 
    text_data = [] 
    with open(os.path.join(data_dir, data_file), 'r') as file_conn: 
        for row in file_conn: 
            text_data.append(row) 
    text_data = text_data[:-1] 
text_data = [x.split('t') for x in text_data if len(x)>=1] 
[text_data_target, text_data_train] = [list(x) for x in zip(*text_data)] 
  1. 为了减少我们的词汇量,我们将通过删除特殊字符和额外的空格来清理输入文本,并将所有内容放在小写中:
代码语言:javascript复制
def clean_text(text_string):
    text_string = re.sub(r'([^sw]|_|[0-9]) ', '', text_string)
    text_string = " ".join(text_string.split())
    text_string = text_string.lower()
    return text_string

# Clean texts
text_data_train = [clean_text(x) for x in text_data_train]

请注意,我们的清洁步骤会删除特殊字符作为替代方案,我们也可以用空格替换它们。理想情况下,这取决于数据集的格式。

  1. 现在我们使用 TensorFlow 的内置词汇处理器函数处理文本。这会将文本转换为适当的索引列表:
代码语言:javascript复制
vocab_processor = tf.contrib.learn.preprocessing.VocabularyProcessor(max_sequence_length,    min_frequency=min_word_frequency) 
text_processed = np.array(list(vocab_processor.fit_transform(text_data_train))) 

请注意,contrib.learn.preprocessing中的函数目前已弃用(使用当前的 TensorFlow 版本,1.10)。目前的替换建议 TensorFlow 预处理包仅在 Python2 中运行。将 TensorFlow 预处理移至 Python3 的工作目前正在进行中,并将取代前两行。请记住,所有当前和最新的代码都可以在这个 GitHub 页面,和 Packt 仓库找到。

  1. 接下来,我们打乱数据以使其随机化:
代码语言:javascript复制
text_processed = np.array(text_processed) 
text_data_target = np.array([1 if x=='ham' else 0 for x in text_data_target]) 
shuffled_ix = np.random.permutation(np.arange(len(text_data_target))) 
x_shuffled = text_processed[shuffled_ix] 
y_shuffled = text_data_target[shuffled_ix] 
  1. 我们还将数据拆分为 80-20 训练测试数据集:
代码语言:javascript复制
ix_cutoff = int(len(y_shuffled)*0.80) 
x_train, x_test = x_shuffled[:ix_cutoff], x_shuffled[ix_cutoff:] 
y_train, y_test = y_shuffled[:ix_cutoff], y_shuffled[ix_cutoff:] 
vocab_size = len(vocab_processor.vocabulary_) 
print("Vocabulary Size: {:d}".format(vocab_size)) 
print("80-20 Train Test split: {:d} -- {:d}".format(len(y_train), len(y_test)))

对于这个秘籍,我们不会进行任何超参数调整。如果读者朝这个方向前进,请记住在继续之前将数据集拆分为训练测试验证集。一个很好的选择是 Scikit-learn 函数model_selection.train_test_split()

  1. 接下来,我们声明图占位符。x输入将是一个大小为[None, max_sequence_length]的占位符,它将是根据文本消息允许的最大字长的批量大小。对于非垃圾邮件或垃圾邮件,y_output占位符只是一个 0 或 1 的整数:
代码语言:javascript复制
x_data = tf.placeholder(tf.int32, [None, max_sequence_length]) 
y_output = tf.placeholder(tf.int32, [None]) 
  1. 我们现在为x输入数据创建嵌入矩阵和嵌入查找操作:
代码语言:javascript复制
embedding_mat = tf.Variable(tf.random_uniform([vocab_size, embedding_size], -1.0, 1.0)) 
embedding_output = tf.nn.embedding_lookup(embedding_mat, x_data) 
  1. 我们将模型声明如下。首先,我们初始化一种要使用的 RNN 单元(RNN 大小为 10)。然后我们通过使其成为动态 RNN 来创建 RNN 序列。然后我们将退出添加到 RNN:
代码语言:javascript复制
cell = tf.nn.rnn_cell.BasicRNNCell(num_units = rnn_size)
output, state = tf.nn.dynamic_rnn(cell, embedding_output, dtype=tf.float32)
output = tf.nn.dropout(output, dropout_keep_prob)

注意,动态 RNN 允许可变长度序列。即使我们在这个例子中使用固定的序列长度,通常最好在 TensorFlow 中使用dynamic_rnn有两个主要原因。一个原因是,在实践中,动态 RNN 实际上运行速度更快;第二个是,如果我们选择,我们可以通过 RNN 运行不同长度的序列。

  1. 现在要得到我们的预测,我们必须重新安排 RNN 并切掉最后一个输出:
代码语言:javascript复制
output = tf.transpose(output, [1, 0, 2]) 
last = tf.gather(output, int(output.get_shape()[0]) - 1) 
  1. 为了完成 RNN 预测,我们通过完全连接的网络层将rnn_size输出转换为两个类别输出:
代码语言:javascript复制
weight = tf.Variable(tf.truncated_normal([rnn_size, 2], stddev=0.1)) 
bias = tf.Variable(tf.constant(0.1, shape=[2])) 
logits_out = tf.nn.softmax(tf.matmul(last, weight)   bias) 
  1. 我们接下来宣布我们的损失函数。请记住,当使用 TensorFlow 中的sparse_softmax函数时,目标必须是整数索引(类型为int),并且对率必须是浮点数:
代码语言:javascript复制
losses = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits_out, labels=y_output) 
loss = tf.reduce_mean(losses) 
  1. 我们还需要一个精确度函数,以便我们可以比较测试和训练集上的算法:
代码语言:javascript复制
accuracy = tf.reduce_mean(tf.cast(tf.equal(tf.argmax(logits_out, 1), tf.cast(y_output, tf.int64)), tf.float32)) 
  1. 接下来,我们创建优化函数并初始化模型变量:
代码语言:javascript复制
optimizer = tf.train.RMSPropOptimizer(learning_rate)
train_step = optimizer.minimize(loss)
init = tf.global_variables_initializer()
sess.run(init) 
  1. 现在我们可以开始循环遍历数据并训练模型。在多次循环数据时,最好在每个周期对数据进行洗牌以防止过度训练:
代码语言:javascript复制
train_loss = [] 
test_loss = [] 
train_accuracy = [] 
test_accuracy = [] 
# Start training 
for epoch in range(epochs): 
    # Shuffle training data 
    shuffled_ix = np.random.permutation(np.arange(len(x_train))) 
    x_train = x_train[shuffled_ix] 
    y_train = y_train[shuffled_ix] 
    num_batches = int(len(x_train)/batch_size)   1 
    for i in range(num_batches): 
        # Select train data 
        min_ix = i * batch_size 
        max_ix = np.min([len(x_train), ((i 1) * batch_size)]) 
        x_train_batch = x_train[min_ix:max_ix] 
        y_train_batch = y_train[min_ix:max_ix] 

        # Run train step 
        train_dict = {x_data: x_train_batch, y_output: y_train_batch, dropout_keep_prob:0.5} 
        sess.run(train_step, feed_dict=train_dict) 

    # Run loss and accuracy for training 
    temp_train_loss, temp_train_acc = sess.run([loss, accuracy], feed_dict=train_dict) 
    train_loss.append(temp_train_loss) 
    train_accuracy.append(temp_train_acc) 

    # Run Eval Step 
    test_dict = {x_data: x_test, y_output: y_test, dropout_keep_prob:1.0} 
    temp_test_loss, temp_test_acc = sess.run([loss, accuracy], feed_dict=test_dict) 
    test_loss.append(temp_test_loss) 
    test_accuracy.append(temp_test_acc) 
    print('Epoch: {}, Test Loss: {:.2}, Test Acc: {:.2}'.format(epoch 1, temp_test_loss, temp_test_acc)) 
  1. 这产生以下输出:
代码语言:javascript复制
Vocabulary Size: 933 
80-20 Train Test split: 4459 -- 1115 
Epoch: 1, Test Loss: 0.59, Test Acc: 0.83 
Epoch: 2, Test Loss: 0.58, Test Acc: 0.83 
...
代码语言:javascript复制
Epoch: 19, Test Loss: 0.46, Test Acc: 0.86 
Epoch: 20, Test Loss: 0.46, Test Acc: 0.86 
  1. 以下是绘制训练/测试损失和准确率的代码:
代码语言:javascript复制
epoch_seq = np.arange(1, epochs 1) 
plt.plot(epoch_seq, train_loss, 'k--', label='Train Set') 
plt.plot(epoch_seq, test_loss, 'r-', label='Test Set') 
plt.title('Softmax Loss') 
plt.xlabel('Epochs') 
plt.ylabel('Softmax Loss') 
plt.legend(loc='upper left') 
plt.show() 
# Plot accuracy over time 
plt.plot(epoch_seq, train_accuracy, 'k--', label='Train Set') 
plt.plot(epoch_seq, test_accuracy, 'r-', label='Test Set') 
plt.title('Test Accuracy') 
plt.xlabel('Epochs') 
plt.ylabel('Accuracy') 
plt.legend(loc='upper left') 
plt.show() 

工作原理

在这个秘籍中,我们创建了一个 RNN 到类别的模型来预测 SMS 文本是垃圾邮件还是非垃圾邮件。我们在测试装置上实现了大约 86% 的准确率。以下是测试和训练集的准确率和损失图:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-KHdJjzJ1-1681566911074)(https://gitcode.net/apachecn/apachecn-dl-zh/-/raw/master/docs/tf-ml-cookbook-2e-zh/img/84d3659e-1220-4f1a-8848-60a9052938c1.png)]

图 3:训练和测试集的准确率(左)和损失(右)

更多

强烈建议您多次浏览训练数据集以获取顺序数据(这也建议用于非顺序数据)。每次传递数据都称为周期。此外,在每个周期之前对数据进行混洗是非常常见的(并且强烈推荐),以最小化数据顺序对训练的影响。

实现 LSTM 模型

我们将扩展我们的 RNN 模型,以便通过在此秘籍中引入 LSTM 单元来使用更长的序列。

准备

长短期记忆(LSTM)是传统 RNN 的变体。 LSTM 是一种解决可变长度 RNN 所具有的消失/爆炸梯度问题的方法。为了解决这个问题,LSTM 单元引入了一个内部遗忘门,它可以修改从一个单元到下一个单元的信息流。为了概念化它的工作原理,我们将逐步介绍一个无偏置的 LSTM 方程式。第一步与常规 RNN 相同:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-E0xSOZJ8-1681566911074)(https://gitcode.net/apachecn/apachecn-dl-zh/-/raw/master/docs/tf-ml-cookbook-2e-zh/img/a540a97f-aa33-4b1f-8682-8fcad8f96292.png)]

为了确定我们想要忘记或通过的值,我们将如下评估候选值。这些值通常称为存储单元:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-mIjXSeF3-1681566911074)(https://gitcode.net/apachecn/apachecn-dl-zh/-/raw/master/docs/tf-ml-cookbook-2e-zh/img/d658968e-1b1c-4871-a429-66c863b9c215.png)]

现在我们用一个遗忘矩阵修改候选存储单元,其计算方法如下:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-yLs8vTFC-1681566911074)(https://gitcode.net/apachecn/apachecn-dl-zh/-/raw/master/docs/tf-ml-cookbook-2e-zh/img/aa794cfb-e140-4c9b-9ea5-a9e1695b5f1d.png)]

我们现在将遗忘存储器与先前的存储器步骤相结合,并将其添加到候选存储器单元以获得新的存储器值:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-VrrMeDlq-1681566911074)(https://gitcode.net/apachecn/apachecn-dl-zh/-/raw/master/docs/tf-ml-cookbook-2e-zh/img/59210e39-f327-4604-a3e1-ebfe782c0818.png)]

现在我们将所有内容组合起来以获取单元格的输出:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-NQmbtWSJ-1681566911075)(https://gitcode.net/apachecn/apachecn-dl-zh/-/raw/master/docs/tf-ml-cookbook-2e-zh/img/bf3b19f0-222e-42f8-8485-9b5c20a37249.png)]

然后,对于下一次迭代,我们更新h如下:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-OfuHAGPQ-1681566911075)(https://gitcode.net/apachecn/apachecn-dl-zh/-/raw/master/docs/tf-ml-cookbook-2e-zh/img/c713765a-d0ce-449e-8195-02f5d1282218.png)]

LSTM 的想法是通过基于输入到单元的信息可以忘记或修改的单元具有自我调节的信息流。

在这里使用 TensorFlow 的一个好处是我们不必跟踪这些操作及其相应的反向传播属性。 TensorFlow 将跟踪这些并根据我们的损失函数,优化器和学习率指定的梯度自动更新模型变量。

对于这个秘籍,我们将使用具有 LSTM 单元的序列 RNN 来尝试预测接下来的单词,对莎士比亚的作品进行训练。为了测试我们的工作方式,我们将提供模型候选短语,例如thou art more,并查看模型是否可以找出短语后面应该包含的单词。

操作步骤

  1. 首先,我们为脚本加载必要的库:
代码语言:javascript复制
import os 
import re 
import string 
import requests 
import numpy as np 
import collections 
import random 
import pickle 
import matplotlib.pyplot as plt 
import tensorflow as tf 
  1. 接下来,我们启动图会话并设置 RNN 参数:
代码语言:javascript复制
sess = tf.Session()

# Set RNN Parameters 
min_word_freq = 5 
rnn_size = 128 
epochs = 10 
batch_size = 100 
learning_rate = 0.001 
training_seq_len = 50  
embedding_size = rnn_size 
save_every = 500 
eval_every = 50 
prime_texts = ['thou art more', 'to be or not to', 'wherefore art thou'] 
  1. 我们设置数据和模型文件夹和文件名,同时声明要删除的标点符号。我们希望保留连字符和撇号,因为莎士比亚经常使用它们来组合单词和音节:
代码语言:javascript复制
data_dir = 'temp' 
data_file = 'shakespeare.txt' 
model_path = 'shakespeare_model' 
full_model_dir = os.path.join(data_dir, model_path) 
# Declare punctuation to remove, everything except hyphens and apostrophe's 
punctuation = string.punctuation 
punctuation = ''.join([x for x in punctuation if x not in ['-', "'"]]) 
  1. 接下来,我们获取数据。如果数据文件不存在,我们下载并保存莎士比亚文本。如果确实存在,我们加载数据:
代码语言:javascript复制
if not os.path.exists(full_model_dir): 
    os.makedirs(full_model_dir) 
# Make data directory 
if not os.path.exists(data_dir): 
    os.makedirs(data_dir) 
print('Loading Shakespeare Data') 
# Check if file is downloaded. 
if not os.path.isfile(os.path.join(data_dir, data_file)): 
    print('Not found, downloading Shakespeare texts from www.gutenberg.org') 
    shakespeare_url = 'http://www.gutenberg.org/cache/epub/100/pg100.txt' 
    # Get Shakespeare text 
    response = requests.get(shakespeare_url) 
    shakespeare_file = response.content 
    # Decode binary into string 
    s_text = shakespeare_file.decode('utf-8') 
    # Drop first few descriptive paragraphs. 
    s_text = s_text[7675:] 
    # Remove newlines 
    s_text = s_text.replace('rn', '') 
    s_text = s_text.replace('n', '') 

    # Write to file 
    with open(os.path.join(data_dir, data_file), 'w') as out_conn: 
        out_conn.write(s_text) 
else: 
    # If file has been saved, load from that file 
    with open(os.path.join(data_dir, data_file), 'r') as file_conn: 
        s_text = file_conn.read().replace('n', '') 
  1. 我们通过删除标点符号和额外的空格来清理莎士比亚的文本:
代码语言:javascript复制
s_text = re.sub(r'[{}]'.format(punctuation), ' ', s_text) 
s_text = re.sub('s ', ' ', s_text ).strip().lower() 
  1. 我们现在处理创建要使用的莎士比亚词汇。我们创建一个函数,它将返回两个字典(单词到索引和索引到单词),其中的单词出现的频率超过指定的频率:
代码语言:javascript复制
def build_vocab(text, min_word_freq): 
    word_counts = collections.Counter(text.split(' ')) 
    # limit word counts to those more frequent than cutoff 
    word_counts = {key:val for key, val in word_counts.items() if val>min_word_freq} 
    # Create vocab --> index mapping 
    words = word_counts.keys() 
    vocab_to_ix_dict = {key:(ix 1) for ix, key in enumerate(words)} 
    # Add unknown key --> 0 index 
    vocab_to_ix_dict['unknown']=0 
    # Create index --> vocab mapping 
    ix_to_vocab_dict = {val:key for key,val in vocab_to_ix_dict.items()} 

    return ix_to_vocab_dict, vocab_to_ix_dict 
ix2vocab, vocab2ix = build_vocab(s_text, min_word_freq) 
vocab_size = len(ix2vocab)   1

请注意,在处理文本时,我们必须小心索引值为零的单词。我们应该保存填充的零值,也可能保存未知单词。

  1. 现在我们有了词汇量,我们将莎士比亚的文本变成了一系列索引:
代码语言:javascript复制
s_text_words = s_text.split(' ') 
s_text_ix = [] 
for ix, x in enumerate(s_text_words): 
    try: 
        s_text_ix.append(vocab2ix[x]) 
    except: 
        s_text_ix.append(0) 
s_text_ix = np.array(s_text_ix) 
  1. 在本文中,我们将展示如何在类对象中创建模型。这对我们很有帮助,因为我们希望使用相同的模型(具有相同的权重)来批量训练并从示例文本生成文本。如果没有采用内部抽样方法的类,这将很难做到。理想情况下,此类代码应位于单独的 Python 文件中,我们可以在此脚本的开头导入该文件:
代码语言:javascript复制
class LSTM_Model(): 
    def __init__(self, rnn_size, batch_size, learning_rate, 
                 training_seq_len, vocab_size, infer =False): 
        self.rnn_size = rnn_size 
        self.vocab_size = vocab_size 
        self.infer = infer 
        self.learning_rate = learning_rate 

        if infer: 
            self.batch_size = 1 
            self.training_seq_len = 1 
        else: 
            self.batch_size = batch_size 
            self.training_seq_len = training_seq_len 

        self.lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(rnn_size) 
        self.initial_state = self.lstm_cell.zero_state(self.batch_size, tf.float32) 

        self.x_data = tf.placeholder(tf.int32, [self.batch_size, self.training_seq_len]) 
        self.y_output = tf.placeholder(tf.int32, [self.batch_size, self.training_seq_len]) 

        with tf.variable_scope('lstm_vars'): 
            # Softmax Output Weights 
            W = tf.get_variable('W', [self.rnn_size, self.vocab_size], tf.float32, tf.random_normal_initializer()) 
            b = tf.get_variable('b', [self.vocab_size], tf.float32, tf.constant_initializer(0.0)) 

            # Define Embedding 
            embedding_mat = tf.get_variable('embedding_mat', [self.vocab_size, self.rnn_size], tf.float32, tf.random_normal_initializer()) 

            embedding_output = tf.nn.embedding_lookup(embedding_mat, self.x_data)
            rnn_inputs = tf.split(embedding_output, num_or_size_splits=self.training_seq_len, axis=1) 
            rnn_inputs_trimmed = [tf.squeeze(x, [1]) for x in rnn_inputs] 

        # If we are inferring (generating text), we add a 'loop' function 
        # Define how to get the i 1 th input from the i th output 
        def inferred_loop(prev, count): 
            prev_transformed = tf.matmul(prev, W)   b 
            prev_symbol = tf.stop_gradient(tf.argmax(prev_transformed, 1)) 
            output = tf.nn.embedding_lookup(embedding_mat, prev_symbol) 
            return output 

        decoder = tf.nn.seq2seq.rnn_decoder 
        outputs, last_state = decoder(rnn_inputs_trimmed, 
                                      self.initial_state, 
                                      self.lstm_cell, 
                                      loop_function=inferred_loop if infer else None) 
        # Non inferred outputs 
        output = tf.reshape(tf.concat(1, outputs), [-1, self.rnn_size]) 
        # Logits and output 
        self.logit_output = tf.matmul(output, W)   b 
        self.model_output = tf.nn.softmax(self.logit_output) 
        loss_fun = tf.contrib.legacy_seq2seq.sequence_loss_by_example
        loss = loss_fun([self.logit_output],[tf.reshape(self.y_output, [-1])], 
                [tf.ones([self.batch_size * self.training_seq_len])], 
                self.vocab_size) 
        self.cost = tf.reduce_sum(loss) / (self.batch_size * self.training_seq_len) 
        self.final_state = last_state 
        gradients, _ = tf.clip_by_global_norm(tf.gradients(self.cost, tf.trainable_variables()), 4.5) 
        optimizer = tf.train.AdamOptimizer(self.learning_rate) 
        self.train_op = optimizer.apply_gradients(zip(gradients, tf.trainable_variables())) 

    def sample(self, sess, words=ix2vocab, vocab=vocab2ix, num=10, prime_text='thou art'): 
        state = sess.run(self.lstm_cell.zero_state(1, tf.float32)) 
        word_list = prime_text.split() 
        for word in word_list[:-1]: 
            x = np.zeros((1, 1)) 
            x[0, 0] = vocab[word] 
            feed_dict = {self.x_data: x, self.initial_state:state} 
            [state] = sess.run([self.final_state], feed_dict=feed_dict) 
        out_sentence = prime_text 
        word = word_list[-1] 
        for n in range(num): 
            x = np.zeros((1, 1)) 
            x[0, 0] = vocab[word] 
            feed_dict = {self.x_data: x, self.initial_state:state} 
            [model_output, state] = sess.run([self.model_output, self.final_state], feed_dict=feed_dict) 
            sample = np.argmax(model_output[0]) 
            if sample == 0: 
                break 
            word = words[sample] 
            out_sentence = out_sentence   ' '   word 
        return out_sentence 
  1. 现在我们将声明 LSTM 模型以及测试模型。我们将在变量范围内执行此操作,并告诉范围我们将重用测试 LSTM 模型的变量:
代码语言:javascript复制
with tf.variable_scope('lstm_model', reuse=tf.AUTO_REUSE) as scope: 
    # Define LSTM Model 
    lstm_model = LSTM_Model(rnn_size, batch_size, learning_rate, 
                     training_seq_len, vocab_size) 
    scope.reuse_variables() 
    test_lstm_model = LSTM_Model(rnn_size, batch_size, learning_rate, 
                     training_seq_len, vocab_size, infer=True) 
  1. 我们创建一个保存操作,并将输入文本拆分为相等的批量大小的块。然后我们初始化模型的变量:
代码语言:javascript复制
saver = tf.train.Saver() 
# Create batches for each epoch 
num_batches = int(len(s_text_ix)/(batch_size * training_seq_len))   1 
# Split up text indices into subarrays, of equal size 
batches = np.array_split(s_text_ix, num_batches) 
# Reshape each split into [batch_size, training_seq_len] 
batches = [np.resize(x, [batch_size, training_seq_len]) for x in batches] 
# Initialize all variables 
init = tf.global_variables_initializer() 
sess.run(init) 
  1. 我们现在可以遍历我们的周期,在每个周期开始之前对数据进行混洗。我们数据的目标只是相同的数据,但是移动了 1(使用numpy.roll()函数):
代码语言:javascript复制
train_loss = [] 
iteration_count = 1 
for epoch in range(epochs): 
    # Shuffle word indices 
    random.shuffle(batches) 
    # Create targets from shuffled batches 
    targets = [np.roll(x, -1, axis=1) for x in batches] 
    # Run a through one epoch 
    print('Starting Epoch #{} of {}.'.format(epoch 1, epochs)) 
    # Reset initial LSTM state every epoch 
    state = sess.run(lstm_model.initial_state) 
    for ix, batch in enumerate(batches): 
        training_dict = {lstm_model.x_data: batch, lstm_model.y_output: targets[ix]} 
        c, h = lstm_model.initial_state 
        training_dict[c] = state.c 
        training_dict[h] = state.h 

        temp_loss, state, _ = sess.run([lstm_model.cost, lstm_model.final_state, lstm_model.train_op], feed_dict=training_dict) 
        train_loss.append(temp_loss) 

        # Print status every 10 gens 
        if iteration_count % 10 == 0: 
            summary_nums = (iteration_count, epoch 1, ix 1, num_batches 1, temp_loss) 
            print('Iteration: {}, Epoch: {}, Batch: {} out of {}, Loss: {:.2f}'.format(*summary_nums)) 

        # Save the model and the vocab 
        if iteration_count % save_every == 0: 
            # Save model 
            model_file_name = os.path.join(full_model_dir, 'model') 
            saver.save(sess, model_file_name, global_step = iteration_count) 
            print('Model Saved To: {}'.format(model_file_name)) 
            # Save vocabulary 
            dictionary_file = os.path.join(full_model_dir, 'vocab.pkl') 
            with open(dictionary_file, 'wb') as dict_file_conn: 
                pickle.dump([vocab2ix, ix2vocab], dict_file_conn) 

        if iteration_count % eval_every == 0: 
            for sample in prime_texts: 
                print(test_lstm_model.sample(sess, ix2vocab, vocab2ix, num=10, prime_text=sample)) 

        iteration_count  = 1 
  1. 这产生以下输出:
代码语言:javascript复制
Loading Shakespeare Data 
Cleaning Text 
Building Shakespeare Vocab 
Vocabulary Length = 8009 
Starting Epoch #1 of 10. 
Iteration: 10, Epoch: 1, Batch: 10 out of 182, Loss: 10.37 
Iteration: 20, Epoch: 1, Batch: 20 out of 182, Loss: 9.54 
... 
Iteration: 1790, Epoch: 10, Batch: 161 out of 182, Loss: 5.68 
Iteration: 1800, Epoch: 10, Batch: 171 out of 182, Loss: 6.05 
thou art more than i am a 
to be or not to the man i have 
wherefore art thou art of the long 
Iteration: 1810, Epoch: 10, Batch: 181 out of 182, Loss: 5.99 
  1. 最后,以下是我们如何绘制历史上的训练损失:
代码语言:javascript复制
plt.plot(train_loss, 'k-') 
plt.title('Sequence to Sequence Loss') 
plt.xlabel('Generation') 
plt.ylabel('Loss') 
plt.show() 

This results in the following plot of our loss values:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-EskYj5GW-1681566911075)(https://gitcode.net/apachecn/apachecn-dl-zh/-/raw/master/docs/tf-ml-cookbook-2e-zh/img/678ff2b5-2732-4bc7-b85f-3fee578fb962.png)]

图 4:模型所有代的序列到序列损失

工作原理

在这个例子中,我们基于莎士比亚词汇构建了一个带有 LSTM 单元的 RNN 模型来预测下一个单词。可以采取一些措施来改进模型,可能会增加序列大小,具有衰减的学习率,或者训练模型以获得更多的周期。

更多

为了抽样,我们实现了一个贪婪的采样器。贪婪的采样器可能会一遍又一遍地重复相同的短语;例如,他们可能会卡住for the for the for the....为了防止这种情况,我们还可以实现一种更随机的采样方式,可能是根据输出的对数或概率分布制作加权采样器。

堆叠多个 LSTM 层

正如我们可以增加神经网络或 CNN 的深度,我们可以增加 RNN 网络的深度。在这个秘籍中,我们应用了一个三层深度的 LSTM 来改进我们的莎士比亚语言生成。

准备

我们可以通过将它们叠加在一起来增加循环神经网络的深度。从本质上讲,我们将获取目标输出并将其输入另一个网络。

要了解这对于两层的工作原理,请参见下图:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-0cBAzUNr-1681566911075)(https://gitcode.net/apachecn/apachecn-dl-zh/-/raw/master/docs/tf-ml-cookbook-2e-zh/img/89cc9e5c-d9d8-403c-8656-6d2a23f69f83.png)]

图 5:在上图中,我们扩展了单层 RNN,使它们具有两层。对于原始的单层版本,请参阅上一章简介中的绘图。左侧架构说明了使用多层 RNN 预测输出序列中的一个输出的方法。正确的架构显示了使用多层 RNN 预测输出序列的方法,该输出序列使用输出作为输入

TensorFlow 允许使用MultiRNNCell()函数轻松实现多个层,该函数接受 RNN 单元列表。有了这种行为,很容易用MultiRNNCell([rnn_cell(num_units) for n in num_layers])单元格从 Python 中的一个单元格创建多层 RNN。

对于这个秘籍,我们将执行我们在之前的秘籍中执行的相同的莎士比亚预测。将有两个变化:第一个变化将是具有三个堆叠的 LSTM 模型而不是仅一个层,第二个变化将是进行字符级预测而不是单词。进行字符级预测会将我们潜在的词汇量大大减少到只有 40 个字符(26 个字母,10 个数字,1 个空格和 3 个特殊字符)。

操作步骤

我们将说明本节中的代码与上一节的不同之处,而不是重新使用所有相同的代码。有关完整代码,请参阅 GitHub 仓库或 Packt 仓库。

  1. 我们首先需要设置模型的层数。我们将此作为参数放在脚本的开头,并使用其他模型参数:
代码语言:javascript复制
num_layers = 3 
min_word_freq = 5
代码语言:javascript复制
rnn_size = 128 
epochs = 10 
  1. 第一个主要变化是我们将按字符加载,处理和提供文本,而不是按字词加载。为了实现这一点,在清理文本之后,我们可以使用 Python 的list()命令逐个字符地分隔整个文本:
代码语言:javascript复制
s_text = re.sub(r'[{}]'.format(punctuation), ' ', s_text) 
s_text = re.sub('s ', ' ', s_text ).strip().lower() 
# Split up by characters 
char_list = list(s_text) 
  1. 我们现在需要更改 LSTM 模型,使其具有多个层。我们接受num_layers变量并使用 TensorFlow 的MultiRNNCell()函数创建一个多层 RNN 模型,如下所示:
代码语言:javascript复制
class LSTM_Model(): 
    def __init__(self, rnn_size, num_layers, batch_size, learning_rate, 
                 training_seq_len, vocab_size, infer_sample=False): 
        self.rnn_size = rnn_size 
        self.num_layers = num_layers 
        self.vocab_size = vocab_size 
        self.infer_sample = infer_sample 
        self.learning_rate = learning_rate 
        ... 

        self.lstm_cell = tf.contrib.rnn.BasicLSTMCell(rnn_size)
        self.lstm_cell = tf.contrib.rnn.MultiRNNCell([self.lstm_cell for _ in range(self.num_layers)]) 
        self.initial_state = self.lstm_cell.zero_state(self.batch_size, tf.float32) 

        self.x_data = tf.placeholder(tf.int32, [self.batch_size, self.training_seq_len]) 
        self.y_output = tf.placeholder(tf.int32, [self.batch_size, self.training_seq_len])

请注意,TensorFlow 的MultiRNNCell()函数接受 RNN 单元列表。在这个项目中,RNN 层都是相同的,但您可以列出您希望堆叠在一起的任何 RNN 层。

  1. 其他一切基本相同。在这里,我们可以看到一些训练输出:
代码语言:javascript复制
Building Shakespeare Vocab by Characters 
Vocabulary Length = 40 
Starting Epoch #1 of 10 
Iteration: 9430, Epoch: 10, Batch: 889 out of 950, Loss: 1.54 
Iteration: 9440, Epoch: 10, Batch: 899 out of 950, Loss: 1.46 
Iteration: 9450, Epoch: 10, Batch: 909 out of 950, Loss: 1.49 
thou art more than the  
to be or not to the serva 
wherefore art thou dost thou 
Iteration: 9460, Epoch: 10, Batch: 919 out of 950, Loss: 1.41 
Iteration: 9470, Epoch: 10, Batch: 929 out of 950, Loss: 1.45 
Iteration: 9480, Epoch: 10, Batch: 939 out of 950, Loss: 1.59 
Iteration: 9490, Epoch: 10, Batch: 949 out of 950, Loss: 1.42 
  1. 以下是最终文本输出的示例:
代码语言:javascript复制
thou art more fancy with to be or not to be for be wherefore art thou art thou 
  1. 最后,以下是我们如何绘制几代的训练损失:
代码语言:javascript复制
plt.plot(train_loss, 'k-') 
plt.title('Sequence to Sequence Loss') 
plt.xlabel('Generation') 
plt.ylabel('Loss') 
plt.show() 

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-uehlZWKg-1681566911076)(https://gitcode.net/apachecn/apachecn-dl-zh/-/raw/master/docs/tf-ml-cookbook-2e-zh/img/c9aa6cf7-c514-4cbe-bbfb-d815dbbb07b1.png)]

图 6:多层 LSTM 莎士比亚模型的训练损失与世代的关系图

工作原理

TensorFlow 只需一个 RNN 单元列表即可轻松将 RNN 层扩展到多个层。对于这个秘籍,我们使用与上一个秘籍相同的莎士比亚数据,但是用字符而不是单词处理它。我们通过三层 LSTM 模型来生成莎士比亚文本。我们可以看到,在仅仅 10 个周期之后,我们就能够以文字的形式产生古老的英语。

创建序列到序列模型

由于我们使用的每个 RNN 单元也都有输出,我们可以训练 RNN 序列来预测其他可变长度的序列。对于这个秘籍,我们将利用这一事实创建一个英语到德语的翻译模型。

准备

对于这个秘籍,我们将尝试构建一个语言翻译模型,以便从英语翻译成德语。

TensorFlow 具有用于序列到序列训练的内置模型类。我们将说明如何在下载的英语 - 德语句子上训练和使用它。我们将使用的数据来自 www.manythings.org 的编译 zip 文件,该文件汇编了 Tatoeba 项目 的数据。这些数据是制表符分隔的英语 - 德语句子翻译;例如,一行可能包含句子hello. /t hallo。该数据包含数千种不同长度的句子。

此部分的代码已升级为使用 TensorFlow 官方仓库提供的神经机器翻译模型。

该项目将向您展示如何下载数据,使用,修改和添加到超参数,以及配置您自己的数据以使用项目文件。

虽然官方教程向您展示了如何通过命令行执行此操作,但本教程将向您展示如何使用提供的内部代码从头开始训练您自己的模型。

操作步骤

  1. 我们首先加载必要的库:
代码语言:javascript复制
import os
import re
import sys
import json
import math
import time
import string
import requests
import io
import numpy as np
import collections
import random
import pickle
import string
import matplotlib.pyplot as plt
import tensorflow as tf
from zipfile import ZipFile
from collections import Counter
from tensorflow.python.ops import lookup_ops
from tensorflow.python.framework import ops
ops.reset_default_graph()

local_repository = 'temp/seq2seq'
  1. 以下代码块将整个 NMT 模型仓库导入temp文件夹:
代码语言:javascript复制
if not os.path.exists(local_repository):
 from git import Repo
 tf_model_repository = 'https://github.com/tensorflow/nmt/'
 Repo.clone_from(tf_model_repository, local_repository)
 sys.path.insert(0, 'temp/seq2seq/nmt/')

# May also try to use 'attention model' by importing the attention model:
# from temp.seq2seq.nmt import attention_model as attention_model
from temp.seq2seq.nmt import model as model
from temp.seq2seq.nmt.utils import vocab_utils as vocab_utils
import temp.seq2seq.nmt.model_helper as model_helper
import temp.seq2seq.nmt.utils.iterator_utils as iterator_utils
import temp.seq2seq.nmt.utils.misc_utils as utils
import temp.seq2seq.nmt.train as train
  1. 接下来,我们设置一些关于词汇量大小,我们将删除的标点符号以及数据存储位置的参数:
代码语言:javascript复制
# Model Parameters
vocab_size = 10000
punct = string.punctuation

# Data Parameters
data_dir = 'temp'
data_file = 'eng_ger.txt'
model_path = 'seq2seq_model'
full_model_dir = os.path.join(data_dir, model_path)
  1. 我们将使用 TensorFlow 提供的超参数格式。这种类型的参数存储(在外部jsonxml文件中)允许我们以编程方式迭代不同类型的架构(在不同的文件中)。对于本演示,我们将使用提供给我们的wmt16.json并进行一些更改:
代码语言:javascript复制
# Load hyper-parameters for translation model. (Good defaults are provided in Repository).
hparams = tf.contrib.training.HParams()
param_file = 'temp/seq2seq/nmt/standard_hparams/wmt16.json'
# Can also try: (For different architectures)
# 'temp/seq2seq/nmt/standard_hparams/iwslt15.json'
# 'temp/seq2seq/nmt/standard_hparams/wmt16_gnmt_4_layer.json',
# 'temp/seq2seq/nmt/standard_hparams/wmt16_gnmt_8_layer.json',

with open(param_file, "r") as f:
    params_json = json.loads(f.read())

for key, value in params_json.items():
    hparams.add_hparam(key, value)
hparams.add_hparam('num_gpus', 0)
hparams.add_hparam('num_encoder_layers', hparams.num_layers)
hparams.add_hparam('num_decoder_layers', hparams.num_layers)
hparams.add_hparam('num_encoder_residual_layers', 0)
hparams.add_hparam('num_decoder_residual_layers', 0)
hparams.add_hparam('init_op', 'uniform')
hparams.add_hparam('random_seed', None)
hparams.add_hparam('num_embeddings_partitions', 0)
hparams.add_hparam('warmup_steps', 0)
hparams.add_hparam('length_penalty_weight', 0)
hparams.add_hparam('sampling_temperature', 0.0)
hparams.add_hparam('num_translations_per_input', 1)
hparams.add_hparam('warmup_scheme', 't2t')
hparams.add_hparam('epoch_step', 0)
hparams.num_train_steps = 5000

# Not use any pretrained embeddings
hparams.add_hparam('src_embed_file', '')
hparams.add_hparam('tgt_embed_file', '')
hparams.add_hparam('num_keep_ckpts', 5)
hparams.add_hparam('avg_ckpts', False)

# Remove attention
hparams.attention = None 
  1. 如果模型和数据目录尚不存在,请创建它们:
代码语言:javascript复制
# Make Model Directory
if not os.path.exists(full_model_dir):
    os.makedirs(full_model_dir)

# Make data directory
if not os.path.exists(data_dir):
    os.makedirs(data_dir)
  1. 现在我们删除标点符号并将翻译数据拆分为英语和德语句子的单词列表:
代码语言:javascript复制
print('Loading English-German Data')
# Check for data, if it doesn't exist, download it and save it
if not os.path.isfile(os.path.join(data_dir, data_file)):
    print('Data not found, downloading Eng-Ger sentences from www.manythings.org')
    sentence_url = 'http://www.manythings.org/anki/deu-eng.zip'
    r = requests.get(sentence_url)
    z = ZipFile(io.BytesIO(r.content))
    file = z.read('deu.txt')
    # Format Data
    eng_ger_data = file.decode('utf-8')
    eng_ger_data = eng_ger_data.encode('ascii', errors='ignore')
    eng_ger_data = eng_ger_data.decode().split('n')
    # Write to file
    with open(os.path.join(data_dir, data_file), 'w') as out_conn:
        for sentence in eng_ger_data:
            out_conn.write(sentence   'n')
else:
    eng_ger_data = []
    with open(os.path.join(data_dir, data_file), 'r') as in_conn:
        for row in in_conn:
            eng_ger_data.append(row[:-1])
print('Done!') 
  1. 现在我们删除英语和德语句子的标点符号:
代码语言:javascript复制
# Remove punctuation
eng_ger_data = [''.join(char for char in sent if char not in punct) for sent in eng_ger_data]
# Split each sentence by tabs 
eng_ger_data = [x.split('t') for x in eng_ger_data if len(x) >= 1]
[english_sentence, german_sentence] = [list(x) for x in zip(*eng_ger_data)]
english_sentence = [x.lower().split() for x in english_sentence]
german_sentence = [x.lower().split() for x in german_sentence]
  1. 为了使用 TensorFlow 中更快的数据管道函数,我们需要以适当的格式将格式化的数据写入磁盘。翻译模型期望的格式如下:
代码语言:javascript复制
train_prefix.source_suffix = train.en
 train_prefix.target_suffix = train.de

后缀将决定语言(en = Englishde = deutsch),前缀决定数据集的类型(训练或测试):

代码语言:javascript复制
# We need to write them to separate text files for the text-line-dataset operations.
train_prefix = 'train'
src_suffix = 'en' # English
tgt_suffix = 'de' # Deutsch (German)
source_txt_file = train_prefix   '.'   src_suffix
hparams.add_hparam('src_file', source_txt_file)
target_txt_file = train_prefix   '.'   tgt_suffix
hparams.add_hparam('tgt_file', target_txt_file)
with open(source_txt_file, 'w') as f:
    for sent in english_sentence:
        f.write(' '.join(sent)   'n')

with open(target_txt_file, 'w') as f:
    for sent in german_sentence:
        f.write(' '.join(sent)   'n')
  1. 接下来,我们需要解析一些(~100)测试句子翻译。我们任意选择大约 100 个句子。然后我们也将它们写入适当的文件:
代码语言:javascript复制
# Partition some sentences off for testing files
test_prefix = 'test_sent'
hparams.add_hparam('dev_prefix', test_prefix)
hparams.add_hparam('train_prefix', train_prefix)
hparams.add_hparam('test_prefix', test_prefix)
hparams.add_hparam('src', src_suffix)
hparams.add_hparam('tgt', tgt_suffix)

num_sample = 100
total_samples = len(english_sentence)
# Get around 'num_sample's every so often in the src/tgt sentences
ix_sample = [x for x in range(total_samples) if x % (total_samples // num_sample) == 0]
test_src = [' '.join(english_sentence[x]) for x in ix_sample]
test_tgt = [' '.join(german_sentence[x]) for x in ix_sample]

# Write test sentences to file
with open(test_prefix   '.'   src_suffix, 'w') as f:
    for eng_test in test_src:
        f.write(eng_test   'n')

with open(test_prefix   '.'   tgt_suffix, 'w') as f:
    for ger_test in test_src:
        f.write(ger_test   'n')
  1. 接下来,我们处理英语和德语句子的词汇表。然后我们将词汇表列表保存到适当的文件中:
代码语言:javascript复制
print('Processing the vocabularies.')
# Process the English Vocabulary
all_english_words = [word for sentence in english_sentence for word in sentence]
all_english_counts = Counter(all_english_words)
eng_word_keys = [x[0] for x in all_english_counts.most_common(vocab_size-3)] # -3 because UNK, S, /S is also in there
eng_vocab2ix = dict(zip(eng_word_keys, range(1, vocab_size)))
eng_ix2vocab = {val: key for key, val in eng_vocab2ix.items()}
english_processed = []
for sent in english_sentence:
    temp_sentence = []
    for word in sent:
        try:
            temp_sentence.append(eng_vocab2ix[word])
        except KeyError:
            temp_sentence.append(0)
    english_processed.append(temp_sentence)

# Process the German Vocabulary
all_german_words = [word for sentence in german_sentence for word in sentence]
all_german_counts = Counter(all_german_words)
ger_word_keys = [x[0] for x in all_german_counts.most_common(vocab_size-3)]
# -3 because UNK, S, /S is also in there
ger_vocab2ix = dict(zip(ger_word_keys, range(1, vocab_size)))
ger_ix2vocab = {val: key for key, val in ger_vocab2ix.items()}
german_processed = []
for sent in german_sentence:
    temp_sentence = []
    for word in sent:
        try:
            temp_sentence.append(ger_vocab2ix[word])
        except KeyError:
            temp_sentence.append(0)
    german_processed.append(temp_sentence)

# Save vocab files for data processing
source_vocab_file = 'vocab'   '.'   src_suffix
hparams.add_hparam('src_vocab_file', source_vocab_file)
eng_word_keys = ['<unk>', '<s>', '</s>']   eng_word_keys

target_vocab_file = 'vocab'   '.'   tgt_suffix
hparams.add_hparam('tgt_vocab_file', target_vocab_file)
ger_word_keys = ['<unk>', '<s>', '</s>']   ger_word_keys

# Write out all unique english words
with open(source_vocab_file, 'w') as f:
    for eng_word in eng_word_keys:
        f.write(eng_word   'n')

# Write out all unique german words
with open(target_vocab_file, 'w') as f:
    for ger_word in ger_word_keys:
        f.write(ger_word   'n')

# Add vocab size to hyper parameters
hparams.add_hparam('src_vocab_size', vocab_size)
hparams.add_hparam('tgt_vocab_size', vocab_size)

# Add out-directory
out_dir = 'temp/seq2seq/nmt_out'
hparams.add_hparam('out_dir', out_dir)
if not tf.gfile.Exists(out_dir):
    tf.gfile.MakeDirs(out_dir)
  1. 接下来,我们将分别创建训练,推断和评估图。首先,我们创建训练图。我们用一个类来做这个并将参数设为namedtuple。此代码来自 NMT TensorFlow 仓库。有关更多信息,请参阅名为model_helper.py的仓库中的文件:
代码语言:javascript复制
class TrainGraph(collections.namedtuple("TrainGraph", ("graph", "model", "iterator", "skip_count_placeholder"))):
    pass

def create_train_graph(scope=None):
    graph = tf.Graph()
    with graph.as_default():
        src_vocab_table, tgt_vocab_table = vocab_utils.create_vocab_tables(hparams.src_vocab_file, hparams.tgt_vocab_file,share_vocab=False)

    src_dataset = tf.data.TextLineDataset(hparams.src_file)
    tgt_dataset = tf.data.TextLineDataset(hparams.tgt_file)
    skip_count_placeholder = tf.placeholder(shape=(), dtype=tf.int64)

    iterator = iterator_utils.get_iterator(src_dataset, tgt_dataset, src_vocab_table, tgt_vocab_table, batch_size=hparams.batch_size, sos=hparams.sos, eos=hparams.eos, random_seed=None, num_buckets=hparams.num_buckets, src_max_len=hparams.src_max_len, tgt_max_len=hparams.tgt_max_len, skip_count=skip_count_placeholder)

 final_model = model.Model(hparams, iterator=iterator, mode=tf.contrib.learn.ModeKeys.TRAIN, source_vocab_table=src_vocab_table, target_vocab_table=tgt_vocab_table, scope=scope)

 return TrainGraph(graph=graph, model=final_model, iterator=iterator, skip_count_placeholder=skip_count_placeholder)

train_graph = create_train_graph()
  1. 我们现在创建评估图:
代码语言:javascript复制
# Create the evaluation graph
class EvalGraph(collections.namedtuple("EvalGraph", ("graph", "model", "src_file_placeholder", "tgt_file_placeholder","iterator"))):
    pass

def create_eval_graph(scope=None):
    graph = tf.Graph()

    with graph.as_default():
        src_vocab_table, tgt_vocab_table = vocab_utils.create_vocab_tables(
            hparams.src_vocab_file, hparams.tgt_vocab_file, hparams.share_vocab)
        src_file_placeholder = tf.placeholder(shape=(), dtype=tf.string)
        tgt_file_placeholder = tf.placeholder(shape=(), dtype=tf.string)
        src_dataset = tf.data.TextLineDataset(src_file_placeholder)
        tgt_dataset = tf.data.TextLineDataset(tgt_file_placeholder)
        iterator = iterator_utils.get_iterator(
            src_dataset,
            tgt_dataset,
            src_vocab_table,
            tgt_vocab_table,
            hparams.batch_size,
            sos=hparams.sos,
            eos=hparams.eos,
            random_seed=hparams.random_seed,
            num_buckets=hparams.num_buckets,
            src_max_len=hparams.src_max_len_infer,
            tgt_max_len=hparams.tgt_max_len_infer)
        final_model = model.Model(hparams,
                                  iterator=iterator,
                                  mode=tf.contrib.learn.ModeKeys.EVAL,
                                  source_vocab_table=src_vocab_table,
                                  target_vocab_table=tgt_vocab_table,
                                  scope=scope)
    return EvalGraph(graph=graph,
                     model=final_model,
                     src_file_placeholder=src_file_placeholder,
                     tgt_file_placeholder=tgt_file_placeholder,
                     iterator=iterator)

eval_graph = create_eval_graph()
  1. 现在我们对推理图做同样的事情:
代码语言:javascript复制
# Inference graph
class InferGraph(collections.namedtuple("InferGraph", ("graph","model","src_placeholder", "batch_size_placeholder","iterator"))):
    pass

def create_infer_graph(scope=None):
    graph = tf.Graph()
    with graph.as_default():
        src_vocab_table, tgt_vocab_table = vocab_utils.create_vocab_tables(hparams.src_vocab_file,hparams.tgt_vocab_file, hparams.share_vocab)
        reverse_tgt_vocab_table = lookup_ops.index_to_string_table_from_file(hparams.tgt_vocab_file, default_value=vocab_utils.UNK)

        src_placeholder = tf.placeholder(shape=[None], dtype=tf.string)
        batch_size_placeholder = tf.placeholder(shape=[], dtype=tf.int64)
        src_dataset = tf.data.Dataset.from_tensor_slices(src_placeholder)
        iterator = iterator_utils.get_infer_iterator(src_dataset,
                                                     src_vocab_table,
                                                     batch_size=batch_size_placeholder,
                                                     eos=hparams.eos,
                                                     src_max_len=hparams.src_max_len_infer)
        final_model = model.Model(hparams,
                                  iterator=iterator,
                                  mode=tf.contrib.learn.ModeKeys.INFER,
                                  source_vocab_table=src_vocab_table,
                                  target_vocab_table=tgt_vocab_table,
                                  reverse_target_vocab_table=reverse_tgt_vocab_table,
                                  scope=scope)
    return InferGraph(graph=graph,
                      model=final_model,
                      src_placeholder=src_placeholder,
                      batch_size_placeholder=batch_size_placeholder,
                      iterator=iterator)

infer_graph = create_infer_graph()
  1. 为了在训练期间提供更多说明性输出,我们提供了在训练迭代期间输出的任意源/目标翻译的简短列表:
代码语言:javascript复制
# Create sample data for evaluation
sample_ix = [25, 125, 240, 450]
sample_src_data = [' '.join(english_sentence[x]) for x in sample_ix]
sample_tgt_data = [' '.join(german_sentence[x]) for x in sample_ix]
print([x for x in zip(sample_src_data, sample_tgt_data)])
  1. 接下来,我们加载训练图:
代码语言:javascript复制
config_proto = utils.get_config_proto()

train_sess = tf.Session(config=config_proto, graph=train_graph.graph)
eval_sess = tf.Session(config=config_proto, graph=eval_graph.graph)
infer_sess = tf.Session(config=config_proto, graph=infer_graph.graph)

# Load the training graph
with train_graph.graph.as_default():
    loaded_train_model, global_step = model_helper.create_or_load_model(train_graph.model,
                                                                        hparams.out_dir,
                                                                        train_sess,
                                                                    "train")

summary_writer = tf.summary.FileWriter(os.path.join(hparams.out_dir, 'Training'), train_graph.graph)
  1. 现在我们将评估操作添加到图中:
代码语言:javascript复制
for metric in hparams.metrics:
    hparams.add_hparam("best_"   metric, 0)
    best_metric_dir = os.path.join(hparams.out_dir, "best_"   metric)
    hparams.add_hparam("best_"   metric   "_dir", best_metric_dir)
    tf.gfile.MakeDirs(best_metric_dir)

eval_output = train.run_full_eval(hparams.out_dir, infer_graph, infer_sess, eval_graph, eval_sess, hparams, summary_writer, sample_src_data, sample_tgt_data)

eval_results, _, acc_blue_scores = eval_output
  1. 现在我们创建初始化操作并初始化图;我们还初始化了一些将更新每次迭代的参数(时间,全局步骤和周期步骤):
代码语言:javascript复制
# Training Initialization
last_stats_step = global_step
last_eval_step = global_step
last_external_eval_step = global_step

steps_per_eval = 10 * hparams.steps_per_stats
steps_per_external_eval = 5 * steps_per_eval

avg_step_time = 0.0
step_time, checkpoint_loss, checkpoint_predict_count = 0.0, 0.0, 0.0
checkpoint_total_count = 0.0
speed, train_ppl = 0.0, 0.0

utils.print_out("# Start step %d, lr %g, %s" %
                (global_step, loaded_train_model.learning_rate.eval(session=train_sess),
                 time.ctime()))
skip_count = hparams.batch_size * hparams.epoch_step
utils.print_out("# Init train iterator, skipping %d elements" % skip_count)

train_sess.run(train_graph.iterator.initializer,
              feed_dict={train_graph.skip_count_placeholder: skip_count})

请注意,默认情况下,训练将每 1,000 次迭代保存模型。如果需要,您可以在超参数中更改此设置。目前,训练此模型并保存最新的五个模型占用大约 2 GB 的硬盘空间。

  1. 以下代码将开始模型的训练和评估。训练的重要部分是在循环的最开始(前三分之一)。其余代码专门用于评估,从样本推断和保存模型,如下所示:
代码语言:javascript复制
# Run training
while global_step < hparams.num_train_steps:
    start_time = time.time()
    try:
        step_result = loaded_train_model.train(train_sess)
        (_, step_loss, step_predict_count, step_summary, global_step, step_word_count,
         batch_size, __, ___) = step_result
        hparams.epoch_step  = 1
    except tf.errors.OutOfRangeError:
        # Next Epoch
        hparams.epoch_step = 0
        utils.print_out("# Finished an epoch, step %d. Perform external evaluation" % global_step)
        train.run_sample_decode(infer_graph,
                                infer_sess,
                                hparams.out_dir,
                                hparams,
                                summary_writer,
                                sample_src_data,
                                sample_tgt_data)
        dev_scores, test_scores, _ = train.run_external_eval(infer_graph,
                                                             infer_sess,
                                                             hparams.out_dir,
                                                             hparams,
                                                             summary_writer)
        train_sess.run(train_graph.iterator.initializer, feed_dict={train_graph.skip_count_placeholder: 0})
        continue

    summary_writer.add_summary(step_summary, global_step)

    # Statistics
    step_time  = (time.time() - start_time)
    checkpoint_loss  = (step_loss * batch_size)
    checkpoint_predict_count  = step_predict_count
    checkpoint_total_count  = float(step_word_count)

    # print statistics
    if global_step - last_stats_step >= hparams.steps_per_stats:
        last_stats_step = global_step
        avg_step_time = step_time / hparams.steps_per_stats
        train_ppl = utils.safe_exp(checkpoint_loss / checkpoint_predict_count)
        speed = checkpoint_total_count / (1000 * step_time)

        utils.print_out(" global step %d lr %g "
                       "step-time %.2fs wps %.2fK ppl %.2f %s" %
                        (global_step,
                         loaded_train_model.learning_rate.eval(session=train_sess),
                         avg_step_time, speed, train_ppl, train._get_best_results(hparams)))

        if math.isnan(train_ppl):
            break

        # Reset timer and loss.
        step_time, checkpoint_loss, checkpoint_predict_count = 0.0, 0.0, 0.0
        checkpoint_total_count = 0.0

    if global_step - last_eval_step >= steps_per_eval:
        last_eval_step = global_step
        utils.print_out("# Save eval, global step %d" % global_step)
        utils.add_summary(summary_writer, global_step, "train_ppl", train_ppl)

        # Save checkpoint
        loaded_train_model.saver.save(train_sess, os.path.join(hparams.out_dir, "translate.ckpt"), global_step=global_step)

        # Evaluate on dev/test
        train.run_sample_decode(infer_graph,
                                infer_sess,
                                out_dir,
                                hparams,
                                summary_writer,
                                sample_src_data,
                                sample_tgt_data)
        dev_ppl, test_ppl = train.run_internal_eval(eval_graph,
                                                    eval_sess,
                                                    out_dir,
                                                    hparams,
                                                    summary_writer)

    if global_step - last_external_eval_step >= steps_per_external_eval:
        last_external_eval_step = global_step

        # Save checkpoint
        loaded_train_model.saver.save(train_sess, os.path.join(hparams.out_dir, "translate.ckpt"), global_step=global_step)

        train.run_sample_decode(infer_graph,
                                infer_sess,
                                out_dir,
                                hparams,
                                summary_writer,
                                sample_src_data,
                                sample_tgt_data)
        dev_scores, test_scores, _ = train.run_external_eval(infer_graph,
                                                             infer_sess,
                                                             out_dir,
                                                             hparams,
                                                             summary_writer)

工作原理

对于这个秘籍,我们使用 TensorFlow 内置的序列到序列模型从英语翻译成德语。

由于我们没有为我们的测试句子提供完美的翻译,因此还有改进的余地。如果我们训练时间更长,并且可能组合一些桶(每个桶中有更多的训练数据),我们可能能够改进我们的翻译。

更多

在 ManyThings 网站上托管了其他类似的双语句子数据集。您可以随意替换任何吸引您的语言数据集。

训练 Siamese RNN 相似性度量

与许多其他模型相比,RNN 模型的一个重要特性是它们可以处理各种长度的序列。利用这一点,以及它们可以推广到之前未见过的序列这一事实,我们可以创建一种方法来衡量输入的相似序列是如何相互作用的。在这个秘籍中,我们将训练一个 Siamese 相似性 RNN 来测量地址之间的相似性以进行记录匹配。

准备

在本文中,我们将构建一个双向 RNN 模型,该模型将输入到一个完全连接的层,该层输出一个固定长度的数值向量。我们为两个输入地址创建双向 RNN 层,并将输出馈送到完全连接的层,该层输出固定长度的数字向量(长度 100)。然后我们将两个向量输出与余弦距离进行比较,余弦距离在 -1 和 1 之间。我们将输入数据表示为与目标 1 相似,并且目标为 -1。余弦距离的预测只是输出的符号(负值表示不相似,正表示相似)。我们可以使用此网络通过从查询地址获取在余弦距离上得分最高的参考地址来进行记录匹配。

请参阅以下网络架构图:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-eTvQzct2-1681566911076)(https://gitcode.net/apachecn/apachecn-dl-zh/-/raw/master/docs/tf-ml-cookbook-2e-zh/img/3ab9a414-bf14-4bef-a6b5-77deef75eea6.png)]

图 8:Siamese RNN 相似性模型架构

这个模型的优点还在于它接受以前没有见过的输入,并且可以将它们与 -1 到 1 的输出进行比较。我们将通过选择模型之前未见过的测试地址在代码中显示它并查看它是否可以匹配到类似的地址。

操作步骤

  1. 我们首先加载必要的库并启动图会话:
代码语言:javascript复制
import os 
import random 
import string 
import numpy as np 
import matplotlib.pyplot as plt 
import tensorflow as tf 
sess = tf.Session() 
  1. 我们现在设置模型参数如下:
代码语言:javascript复制
batch_size = 200 
n_batches = 300 
max_address_len = 20 
margin = 0.25 
num_features = 50 
dropout_keep_prob = 0.8 
  1. 接下来,我们创建 Siamese RNN 相似性模型类,如下所示:
代码语言:javascript复制
def snn(address1, address2, dropout_keep_prob, 
        vocab_size, num_features, input_length): 

    # Define the Siamese double RNN with a fully connected layer at the end 
    def Siamese_nn(input_vector, num_hidden): 
        cell_unit = tf.nn.rnn_cell.BasicLSTMCell 

        # Forward direction cell 
        lstm_forward_cell = cell_unit(num_hidden, forget_bias=1.0) 
        lstm_forward_cell = tf.nn.rnn_cell.DropoutWrapper(lstm_forward_cell, output_keep_prob=dropout_keep_prob) 

        # Backward direction cell 
        lstm_backward_cell = cell_unit(num_hidden, forget_bias=1.0) 
        lstm_backward_cell = tf.nn.rnn_cell.DropoutWrapper(lstm_backward_cell, output_keep_prob=dropout_keep_prob) 

        # Split title into a character sequence 
        input_embed_split = tf.split(1, input_length, input_vector) 
        input_embed_split = [tf.squeeze(x, squeeze_dims=[1]) for x in input_embed_split] 

        # Create bidirectional layer 
        outputs, _, _ = tf.nn.bidirectional_rnn(lstm_forward_cell, 
                                                lstm_backward_cell, 
                                                input_embed_split, 
                                                dtype=tf.float32) 
        # Average The output over the sequence 
        temporal_mean = tf.add_n(outputs) / input_length 

        # Fully connected layer 
        output_size = 10 
        A = tf.get_variable(name="A", shape=[2*num_hidden, output_size], 
                            dtype=tf.float32, 
                            initializer=tf.random_normal_initializer(stddev=0.1)) 
        b = tf.get_variable(name="b", shape=[output_size], dtype=tf.float32, 
                            initializer=tf.random_normal_initializer(stddev=0.1)) 

        final_output = tf.matmul(temporal_mean, A)   b 
        final_output = tf.nn.dropout(final_output, dropout_keep_prob) 

        return(final_output) 

    with tf.variable_scope("Siamese") as scope: 
            output1 = Siamese_nn(address1, num_features) 
            # Declare that we will use the same variables on the second string 
            scope.reuse_variables() 
            output2 = Siamese_nn(address2, num_features) 

    # Unit normalize the outputs 
    output1 = tf.nn.l2_normalize(output1, 1) 
    output2 = tf.nn.l2_normalize(output2, 1) 
    # Return cosine distance 
    #   in this case, the dot product of the norms is the same. 
    dot_prod = tf.reduce_sum(tf.mul(output1, output2), 1) 

    return dot_prod

请注意,使用变量范围在两个地址输入的 Siamese 网络的两个部分之间共享参数。另外,请注意,余弦距离是通过归一化向量的点积来实现的。

  1. 现在我们将声明我们的预测函数,它只是余弦距离的符号,如下所示:
代码语言:javascript复制
def get_predictions(scores): 
    predictions = tf.sign(scores, name="predictions") 
    return predictions 
  1. 现在我们将如前所述声明我们的loss函数。请记住,我们希望为误差留下边距(类似于 SVM 模型)。我们还将有一个真正的积极和真正的消极的损失期限。使用以下代码进行损失:
代码语言:javascript复制
def loss(scores, y_target, margin): 
    # Calculate the positive losses 
    pos_loss_term = 0.25 * tf.square(tf.sub(1., scores)) 
    pos_mult = tf.cast(y_target, tf.float32) 

    # Make sure positive losses are on similar strings 
    positive_loss = tf.mul(pos_mult, pos_loss_term) 

    # Calculate negative losses, then make sure on dissimilar strings 
    neg_mult = tf.sub(1., tf.cast(y_target, tf.float32)) 

    negative_loss = neg_mult*tf.square(scores) 

    # Combine similar and dissimilar losses 
    loss = tf.add(positive_loss, negative_loss) 

    # Create the margin term.  This is when the targets are 0, and the scores are less than m, return 0. 

    # Check if target is zero (dissimilar strings) 
    target_zero = tf.equal(tf.cast(y_target, tf.float32), 0.) 
    # Check if cosine outputs is smaller than margin 
    less_than_margin = tf.less(scores, margin) 
    # Check if both are true 
    both_logical = tf.logical_and(target_zero, less_than_margin) 
    both_logical = tf.cast(both_logical, tf.float32) 
    # If both are true, then multiply by (1-1)=0. 
    multiplicative_factor = tf.cast(1. - both_logical, tf.float32) 
    total_loss = tf.mul(loss, multiplicative_factor) 

    # Average loss over batch 
    avg_loss = tf.reduce_mean(total_loss) 
    return avg_loss 
  1. 我们声明accuracy函数如下:
代码语言:javascript复制
def accuracy(scores, y_target): 
    predictions = get_predictions(scores) 
    correct_predictions = tf.equal(predictions, y_target) 
    accuracy = tf.reduce_mean(tf.cast(correct_predictions, tf.float32)) 
    return accuracy 
  1. 我们将通过在地址中创建拼写错误来创建类似的地址。我们将这些地址(参考地址和拼写错误地址)表示为类似:
代码语言:javascript复制
def create_typo(s): 
    rand_ind = random.choice(range(len(s))) 
    s_list = list(s) 
    s_list[rand_ind]=random.choice(string.ascii_lowercase   '0123456789') 
    s = ''.join(s_list) 
    return s 
  1. 我们将生成的数据将是街道号码,street_names和街道后缀的随机组合。名称和后缀来自以下列表:
代码语言:javascript复制
street_names = ['abbey', 'baker', 'canal', 'donner', 'elm', 'fifth', 'grandvia', 'hollywood', 'interstate', 'jay', 'kings'] 
street_types = ['rd', 'st', 'ln', 'pass', 'ave', 'hwy', 'cir', 'dr', 'jct'] 
  1. 我们生成测试查询和引用如下:
代码语言:javascript复制
test_queries = ['111 abbey ln', '271 doner cicle', 
                '314 king avenue', 'tensorflow is fun'] 
test_references = ['123 abbey ln', '217 donner cir', '314 kings ave', '404 hollywood st', 'tensorflow is so fun']

请注意,最后一个查询和引用不是模型之前会看到的地址,但我们希望它们将是模型最终看到的最相似的地址。

  1. 我们现在将定义如何生成一批数据。我们的批量数据将是 50% 类似的地址(参考地址和拼写错误地址)和 50% 不同的地址。我们通过占用地址列表的一半并将目标移动一个位置(使用numpy.roll()函数)来生成不同的地址:
代码语言:javascript复制
def get_batch(n): 
    # Generate a list of reference addresses with similar addresses that have 
    # a typo. 
    numbers = [random.randint(1, 9999) for i in range(n)] 
    streets = [random.choice(street_names) for i in range(n)] 
    street_suffs = [random.choice(street_types) for i in range(n)] 
    full_streets = [str(w)   ' '   x   ' '   y for w,x,y in zip(numbers, streets, street_suffs)] 
    typo_streets = [create_typo(x) for x in full_streets] 
    reference = [list(x) for x in zip(full_streets, typo_streets)] 

    # Shuffle last half of them for training on dissimilar addresses 
    half_ix = int(n/2) 
    bottom_half = reference[half_ix:] 
    true_address = [x[0] for x in bottom_half] 
    typo_address = [x[1] for x in bottom_half] 
    typo_address = list(np.roll(typo_address, 1)) 
    bottom_half = [[x,y] for x,y in zip(true_address, typo_address)] 
    reference[half_ix:] = bottom_half 

    # Get target similarities (1's for similar, -1's for non-similar) 
    target = [1]*(n-half_ix)   [-1]*half_ix 
    reference = [[x,y] for x,y in zip(reference, target)] 
    return reference 
  1. 接下来,我们定义地址词汇表并指定如何将地址热编码为索引:
代码语言:javascript复制
vocab_chars = string.ascii_lowercase   '0123456789 ' 
vocab2ix_dict = {char:(ix 1) for ix, char in enumerate(vocab_chars)} 
vocab_length = len(vocab_chars)   1 

# Define vocab one-hot encoding 
def address2onehot(address, 
                   vocab2ix_dict = vocab2ix_dict, 
                   max_address_len = max_address_len): 
    # translate address string into indices 
    address_ix = [vocab2ix_dict[x] for x in list(address)] 

    # Pad or crop to max_address_len 
    address_ix = (address_ix   [0]*max_address_len)[0:max_address_len] 
    return address_ix 
  1. 处理完词汇后,我们将开始声明我们的模型占位符和嵌入查找。对于嵌入查找,我们将使用单一矩阵作为查找矩阵来使用单热编码嵌入。使用以下代码:
代码语言:javascript复制
address1_ph = tf.placeholder(tf.int32, [None, max_address_len], name="address1_ph") 
address2_ph = tf.placeholder(tf.int32, [None, max_address_len], name="address2_ph") 
y_target_ph = tf.placeholder(tf.int32, [None], name="y_target_ph") 
dropout_keep_prob_ph = tf.placeholder(tf.float32, name="dropout_keep_prob") 

# Create embedding lookup 
identity_mat = tf.diag(tf.ones(shape=[vocab_length])) 
address1_embed = tf.nn.embedding_lookup(identity_mat, address1_ph) 
address2_embed = tf.nn.embedding_lookup(identity_mat, address2_ph) 
  1. 我们现在将声明modelbatch_accuracybatch_losspredictions操作如下:
代码语言:javascript复制
# Define Model 
text_snn = model.snn(address1_embed, address2_embed, dropout_keep_prob_ph, 
                     vocab_length, num_features, max_address_len) 
# Define Accuracy 
batch_accuracy = model.accuracy(text_snn, y_target_ph) 
# Define Loss 
batch_loss = model.loss(text_snn, y_target_ph, margin) 
# Define Predictions 
predictions = model.get_predictions(text_snn) 
  1. 最后,在我们开始训练之前,我们将优化和初始化操作添加到图中,如下所示:
代码语言:javascript复制
# Declare optimizer 
optimizer = tf.train.AdamOptimizer(0.01) 
# Apply gradients 
train_op = optimizer.minimize(batch_loss) 
# Initialize Variables 
init = tf.global_variables_initializer() 
sess.run(init) 
  1. 我们现在将遍历训练世代并跟踪损失和准确率:
代码语言:javascript复制
train_loss_vec = [] 
train_acc_vec = [] 
for b in range(n_batches): 
    # Get a batch of data 
    batch_data = get_batch(batch_size) 
    # Shuffle data 
    np.random.shuffle(batch_data) 
    # Parse addresses and targets 
    input_addresses = [x[0] for x in batch_data] 
    target_similarity = np.array([x[1] for x in batch_data]) 
    address1 = np.array([address2onehot(x[0]) for x in input_addresses]) 
    address2 = np.array([address2onehot(x[1]) for x in input_addresses]) 

    train_feed_dict = {address1_ph: address1, 
                       address2_ph: address2, 
                       y_target_ph: target_similarity, 
                       dropout_keep_prob_ph: dropout_keep_prob} 

    _, train_loss, train_acc = sess.run([train_op, batch_loss, batch_accuracy], 
                                        feed_dict=train_feed_dict) 
    # Save train loss and accuracy 
    train_loss_vec.append(train_loss) 
    train_acc_vec.append(train_acc) 
  1. 经过训练,我们现在处理测试查询和引用,以了解模型的执行方式:
代码语言:javascript复制
test_queries_ix = np.array([address2onehot(x) for x in test_queries]) 
test_references_ix = np.array([address2onehot(x) for x in test_references]) 
num_refs = test_references_ix.shape[0] 
best_fit_refs = [] 
for query in test_queries_ix: 
    test_query = np.repeat(np.array([query]), num_refs, axis=0) 
    test_feed_dict = {address1_ph: test_query, 
                      address2_ph: test_references_ix, 
                      y_target_ph: target_similarity, 
                      dropout_keep_prob_ph: 1.0} 
    test_out = sess.run(text_snn, feed_dict=test_feed_dict) 
    best_fit = test_references[np.argmax(test_out)] 
    best_fit_refs.append(best_fit) 
print('Query Addresses: {}'.format(test_queries)) 
print('Model Found Matches: {}'.format(best_fit_refs)) 
  1. 这产生以下输出:
代码语言:javascript复制
Query Addresses: ['111 abbey ln', '271 doner cicle', '314 king avenue', 'tensorflow is fun'] 
Model Found Matches: ['123 abbey ln', '217 donner cir', '314 kings ave', 'tensorflow is so fun'] 

更多

我们可以从测试查询和参考中看到模型不仅能够识别正确的参考地址,而且还能够推广到非地址短语。我们还可以通过查看训练期间的损失和准确率来了解模型的执行情况:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-c1Gkv86z-1681566911076)(https://gitcode.net/apachecn/apachecn-dl-zh/-/raw/master/docs/tf-ml-cookbook-2e-zh/img/83345bbb-8fc4-4d17-b90d-b8c2ebb16c2a.png)]

图 9:训练期间 Siamese RNN 相似性模型的准确率和损失

请注意,我们没有为此练习指定测试集。这是因为我们如何生成数据。我们创建了一个批量函数,每次调用它时都会创建新的批量数据,因此模型始终可以看到新数据。因此,我们可以使用批量损失和精度作为测试损失和准确率的替代项。但是,对于一组有限的实际数据,情况永远不会如此,因为我们总是需要训练和测试集来判断模型的表现。

十、将 TensorFlow 投入生产

在本章中,我们将介绍以下主题:

  • 实现单元测试
  • 使用多个执行器
  • 并行化 TensorFlow
  • 将 TensorFlow 投入生产
  • 生产环境 TensorFlow 的一个例子
  • 使用 TensorFlow 服务

介绍

到目前为止,我们已经介绍了如何在 TensorFlow 中训练和评估各种模型。因此,在本章中,我们将向您展示如何编写可供生产使用的代码。生产就绪代码有各种定义,但对我们来说,生产代码将被定义为具有单元测试的代码,分离训练和评估代码,并有效地保存,并加载数据管道和图会话的各种所需部分。

本章提供的 Python 脚本应该从命令行运行。这允许运行测试,并将设备位置记录到屏幕上。

实现单元测试

测试代码可以加快原型设计速度,提高调试效率,加快更改速度,并且可以更轻松地共享代码。在 TensorFlow 中有许多简单的方法可以实现单元测试,我们将在本文中介绍它们。

准备

在编写 TensorFlow 模型时,有助于进行单元测试以检查程序的功能。这有助于我们,因为当我们想要对程序单元进行更改时,测试将确保这些更改不会以未知方式破坏模型。在这个秘籍中,我们将创建一个依赖于MNIST数据的简单 CNN 网络。有了它,我们将实现三种不同类型的单元测试来说明如何在 TensorFlow 中编写它们。

请注意,Python 有一个很棒的测试库,名为 Nose。 TensorFlow 还具有内置测试功能,我们将在其中查看,这样可以更轻松地测试 Tensor 对象的值,而无需评估会话中的值。

  1. 首先,我们需要加载必要的库并格式化数据,如下所示:
代码语言:javascript复制
import sys
import numpy as np 
import tensorflow as tf 
from tensorflow.python.framework import ops 
ops.reset_default_graph() 
# Start a graph session 
sess = tf.Session() 
# Load data 
data_dir = 'temp' 
mnist = tf.keras.datasets.mnist
(train_xdata, train_labels), (test_xdata, test_labels) = mnist.load_data()
train_xdata = train_xdata / 255.0
test_xdata = test_xdata / 255.0
# Set model parameters 
batch_size = 100 
learning_rate = 0.005 
evaluation_size = 100 
image_width = train_xdata[0].shape[0] 
image_height = train_xdata[0].shape[1] 
target_size = max(train_labels)   1 
num_channels = 1 # greyscale = 1 channel 
generations = 100 
eval_every = 5 
conv1_features = 25 
conv2_features = 50 
max_pool_size1 = 2 # NxN window for 1st max pool layer 
max_pool_size2 = 2 # NxN window for 2nd max pool layer 
fully_connected_size1 = 100 
dropout_prob = 0.75 
  1. 然后,我们需要声明我们的占位符,变量和模型公式,如下所示:
代码语言:javascript复制
# Declare model placeholders 
x_input_shape = (batch_size, image_width, image_height, num_channels) 
x_input = tf.placeholder(tf.float32, shape=x_input_shape) 
y_target = tf.placeholder(tf.int32, shape=(batch_size)) 
eval_input_shape = (evaluation_size, image_width, image_height, num_channels) 
eval_input = tf.placeholder(tf.float32, shape=eval_input_shape) 
eval_target = tf.placeholder(tf.int32, shape=(evaluation_size)) 
dropout = tf.placeholder(tf.float32, shape=()) 
# Declare model parameters 
conv1_weight = tf.Variable(tf.truncated_normal([4, 4, num_channels, conv1_features], 
                                              stddev=0.1, dtype=tf.float32)) 
conv1_bias = tf.Variable(tf.zeros([conv1_features], dtype=tf.float32)) 
conv2_weight = tf.Variable(tf.truncated_normal([4, 4, conv1_features, conv2_features], 
                                               stddev=0.1, dtype=tf.float32)) 
conv2_bias = tf.Variable(tf.zeros([conv2_features], dtype=tf.float32)) 
# fully connected variables 
resulting_width = image_width // (max_pool_size1 * max_pool_size2) 
resulting_height = image_height // (max_pool_size1 * max_pool_size2) 
full1_input_size = resulting_width * resulting_height * conv2_features 
full1_weight = tf.Variable(tf.truncated_normal([full1_input_size, fully_connected_size1], 
                          stddev=0.1, dtype=tf.float32)) 
full1_bias = tf.Variable(tf.truncated_normal([fully_connected_size1], stddev=0.1, dtype=tf.float32)) 
full2_weight = tf.Variable(tf.truncated_normal([fully_connected_size1, target_size], 
                                               stddev=0.1, dtype=tf.float32)) 
full2_bias = tf.Variable(tf.truncated_normal([target_size], stddev=0.1, dtype=tf.float32)) 

# Initialize Model Operations 
def my_conv_net(input_data): 
    # First Conv-ReLU-MaxPool Layer 
    conv1 = tf.nn.conv2d(input_data, conv1_weight, strides=[1, 1, 1, 1], padding='SAME') 
    relu1 = tf.nn.relu(tf.nn.bias_add(conv1, conv1_bias)) 
    max_pool1 = tf.nn.max_pool(relu1, ksize=[1, max_pool_size1, max_pool_size1, 1], 
                               strides=[1, max_pool_size1, max_pool_size1, 1], padding='SAME') 
    # Second Conv-ReLU-MaxPool Layer 
    conv2 = tf.nn.conv2d(max_pool1, conv2_weight, strides=[1, 1, 1, 1], padding='SAME') 
    relu2 = tf.nn.relu(tf.nn.bias_add(conv2, conv2_bias)) 
    max_pool2 = tf.nn.max_pool(relu2, ksize=[1, max_pool_size2, max_pool_size2, 1], 
                               strides=[1, max_pool_size2, max_pool_size2, 1], padding='SAME') 
    # Transform Output into a 1xN layer for next fully connected layer 
    final_conv_shape = max_pool2.get_shape().as_list() 
    final_shape = final_conv_shape[1] * final_conv_shape[2] * final_conv_shape[3] 
    flat_output = tf.reshape(max_pool2, [final_conv_shape[0], final_shape]) 
    # First Fully Connected Layer 
    fully_connected1 = tf.nn.relu(tf.add(tf.matmul(flat_output, full1_weight), full1_bias)) 
    # Second Fully Connected Layer 
    final_model_output = tf.add(tf.matmul(fully_connected1, full2_weight), full2_bias) 

    # Add dropout 
    final_model_output = tf.nn.dropout(final_model_output, dropout) 
    return final_model_output 

model_output = my_conv_net(x_input) 
test_model_output = my_conv_net(eval_input) 
  1. 接下来,我们创建我们的损失函数以及我们的预测和精确操作。然后,我们初始化以下模型变量:
代码语言:javascript复制
# Declare Loss Function (softmax cross entropy) 
loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(model_output, y_target)) 
# Create a prediction function 
prediction = tf.nn.softmax(model_output) 
test_prediction = tf.nn.softmax(test_model_output) 

# Create accuracy function 
def get_accuracy(logits, targets): 
    batch_predictions = np.argmax(logits, axis=1) 
    num_correct = np.sum(np.equal(batch_predictions, targets)) 
    return 100. * num_correct/batch_predictions.shape[0] 

# Create an optimizer 
my_optimizer = tf.train.MomentumOptimizer(learning_rate, 0.9) 
train_step = my_optimizer.minimize(loss) 
# Initialize Variables 
init = tf.global_variables_initializer() 
sess.run(init) 
  1. 对于我们的第一个单元测试,我们使用类tf.test.TestCase并创建一种方法来测试占位符(或变量)的值。对于此测试用例,我们确保损失概率(用于保持)大于0.25,因此模型不会更改为尝试训练超过 75% 的损失,如下所示:
代码语言:javascript复制
# Check values of tensors! 
class DropOutTest(tf.test.TestCase): 
    # Make sure that we don't drop too much 
    def dropout_greaterthan(self): 
        with self.test_session(): 
          self.assertGreater(dropout.eval(), 0.25) 
  1. 接下来,我们需要测试我们的accuracy函数是否按预期运行。为此,我们创建一个概率样本数组和我们期望的样本,然后确保测试精度返回 100% ,如下所示:
代码语言:javascript复制
# Test accuracy function 
class AccuracyTest(tf.test.TestCase): 
    # Make sure accuracy function behaves correctly 
    def accuracy_exact_test(self): 
        with self.test_session(): 
            test_preds = [[0.9, 0.1],[0.01, 0.99]] 
            test_targets = [0, 1] 
            test_acc = get_accuracy(test_preds, test_targets) 
            self.assertEqual(test_acc.eval(), 100.) 
  1. 我们还可以确保Tensor对象是我们期望的形状。要通过target_size测试模型输出是batch_size的预期形状,请输入以下代码:
代码语言:javascript复制
# Test tensorshape 
class ShapeTest(tf.test.TestCase): 
    # Make sure our model output is size [batch_size, num_classes] 
    def output_shape_test(self): 
        with self.test_session(): 
            numpy_array = np.ones([batch_size, target_size]) 
            self.assertShapeEqual(numpy_array, model_output) 
  1. 现在我们需要在脚本中使用main()函数告诉 TensorFlow 我们正在运行哪个应用。脚本如下:
代码语言:javascript复制
def main(argv):
    # Start training loop
    train_loss = []
    train_acc = []
    test_acc = []
    for i in range(generations):
        rand_index = np.random.choice(len(train_xdata), size=batch_size)
        rand_x = train_xdata[rand_index]
        rand_x = np.expand_dims(rand_x, 3)
        rand_y = train_labels[rand_index]
        train_dict = {x_input: rand_x, y_target: rand_y, dropout: dropout_prob}

        sess.run(train_step, feed_dict=train_dict)
        temp_train_loss, temp_train_preds = sess.run([loss, prediction], feed_dict=train_dict)
        temp_train_acc = get_accuracy(temp_train_preds, rand_y)

        if (i   1) % eval_every == 0:
            eval_index = np.random.choice(len(test_xdata), size=evaluation_size)
            eval_x = test_xdata[eval_index]
            eval_x = np.expand_dims(eval_x, 3)
            eval_y = test_labels[eval_index]
            test_dict = {eval_input: eval_x, eval_target: eval_y, dropout: 1.0}
            test_preds = sess.run(test_prediction, feed_dict=test_dict)
            temp_test_acc = get_accuracy(test_preds, eval_y)

            # Record and print results
            train_loss.append(temp_train_loss)
            train_acc.append(temp_train_acc)
            test_acc.append(temp_test_acc)
            acc_and_loss = [(i   1), temp_train_loss, temp_train_acc, temp_test_acc]
            acc_and_loss = [np.round(x, 2) for x in acc_and_loss]
            print('Generation # {}. Train Loss: {:.2f}. Train Acc (Test Acc): {:.2f} 
                   ({:.2f})'.format(*acc_and_loss))
  1. 要让我们的脚本执行测试或训练,我们需要以不同的方式从命令行调用它。以下代码段是主程序代码。如果程序收到参数test,它将执行测试;否则,它将运行训练:
代码语言:javascript复制
if __name__ == '__main__':
    cmd_args = sys.argv
    if len(cmd_args) > 1 and cmd_args[1] == 'test':
        # Perform unit-tests
        tf.test.main(argv=cmd_args[1:])
    else:
        # Run the TensorFlow app
        tf.app.run(main=None, argv=cmd_args)
  1. 如果我们在命令行上运行程序,我们应该得到以下输出:
代码语言:javascript复制
$ python3 implementing_unit_tests.py test
...
----------------------------------------------------------------------
Ran 3 tests in 0.001s

OK 

前面步骤中描述的完整程序可以在书籍的 GitHub 仓库和 Packt 仓库中找到。

工作原理

在本节中,我们实现了三种类型的单元测试:张量值,操作输出和张量形状。 TensorFlow 有更多类型的单元测试函数,可在此处找到 。

请记住,单元测试有助于确保代码能够按预期运行,为共享代码提供信心,并使再现性更易于访问。

使用多个执行器

您将意识到 TensorFlow 有许多功能,包括计算图,它们可以自然地并行计算。计算图可以分为不同的处理器以及处理不同的批量。我们将讨论如何在此秘籍中访问同一台机器上的不同处理器。

准备

对于此秘籍,我们将向您展示如何在同一系统上访问多个设备并对其进行训练。这是一种非常常见的情况:与 CPU 一起,机器可能具有一个或多个可以共享计算负载的 GPU。如果 TensorFlow 可以访问这些设备,它将通过贪婪的过程自动将计算分配给多个设备。但是,TensorFlow 还允许程序通过名称范围放置指定哪些设备将在哪个设备上。

要访问 GPU 设备,必须安装 GPU 版本的 TensorFlow。要安装 TensorFlow 的 GPU 版本,请访问此链接。下载,设置并按照特定系统的说明进行操作。请注意,TensorFlow 的 GPU 版本需要 CUDA 才能使用 GPU。

在本文中,我们将向您展示各种命令,允许您访问系统上的各种设备;我们还将演示如何找出 TensorFlow 正在使用的设备。

操作步骤

  1. 为了找出 TensorFlow 用于哪些操作的设备,我们需要在会话参数中设置config,将log_device_placement设置为True。当我们从命令行运行脚本时,我们将看到特定的设备放置,如以下输出所示:
代码语言:javascript复制
import tensorflow as tf 
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True)) 
a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a') 
b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b') 
c = tf.matmul(a, b) 
# Runs the op. 
print(sess.run(c)) 
  1. 从终端,运行以下命令:
代码语言:javascript复制
$python3 using_multiple_devices.py 
Device mapping: no known devices. 
I tensorflow/core/common_runtime/direct_session.cc:175] Device mapping: 
MatMul: /job:localhost/replica:0/task:0/cpu:0 
I tensorflow/core/common_runtime/simple_placer.cc:818] MatMul: /job:localhost/replica:0/task:0/cpu:0 
b: /job:localhost/replica:0/task:0/cpu:0 
I tensorflow/core/common_runtime/simple_placer.cc:818] b: /job:localhost/replica:0/task:0/cpu:0 
a: /job:localhost/replica:0/task:0/cpu:0 
I tensorflow/core/common_runtime/simple_placer.cc:818] a: /job:localhost/replica:0/task:0/cpu:0 
[[ 22.  28.] 
 [ 49.  64.]] 
  1. 默认情况下,TensorFlow 会自动决定如何跨计算设备(CPU 和 GPU)分配计算,有时我们需要了解这些展示位置。这在加载早期的现有模型时非常有用,该模型在我们的计算机具有不同设备时在图中分配了硬展示位置。我们可以在配置中设置软放置以解决此问题,如下所示:
代码语言:javascript复制
config = tf.ConfigProto() 
config.allow_soft_placement = True 
sess_soft = tf.Session(config=config) 
  1. 使用 GPU 时,TensorFlow 会自动占用 GPU 内存的很大一部分。虽然通常需要这样做,但我们可以采取措施更加小心 GPU 内存分配。虽然 TensorFlow 从未发布 GPU 内存,但我们可以通过设置 GPU 内存增长选项,将其分配缓慢增加到最大限制(仅在需要时),如下所示:
代码语言:javascript复制
config.gpu_options.allow_growth = True 
sess_grow = tf.Session(config=config) 
  1. 如果我们想对 TensorFlow 使用的 GPU 内存百分比设置硬限制,我们可以使用config设置per_process_gpu_memory_fraction,如下所示:
代码语言:javascript复制
config.gpu_options.per_process_gpu_memory_fraction = 0.4 
sess_limited = tf.Session(config=config) 
  1. 有时我们可能需要编写可靠的代码来确定它是否在 GPU 可用的情况下运行。 TensorFlow 具有内置功能,可以测试 GPU 是否可用。当我们想要编写在可用时利用 GPU 并为其分配特定操作的代码时,这很有用。这是通过以下代码完成的:
代码语言:javascript复制
if tf.test.is_built_with_cuda(): 
    <Run GPU specific code here>
  1. 如果我们需要为 GPU 分配特定操作,请输入以下代码。这将执行简单的计算并将操作分配给主 CPU 和两个辅助 GPU:
代码语言:javascript复制
with tf.device('/cpu:0'): 
    a = tf.constant([1.0, 3.0, 5.0], shape=[1, 3]) 
    b = tf.constant([2.0, 4.0, 6.0], shape=[3, 1]) 

    with tf.device('/gpu:0'): 
        c = tf.matmul(a,b) 
        c = tf.reshape(c, [-1]) 

    with tf.device('/gpu:1'): 
        d = tf.matmul(b,a) 
        flat_d = tf.reshape(d, [-1]) 

    combined = tf.multiply(c, flat_d) 
print(sess.run(combined)) 

工作原理

当我们想在我们的机器上为 TensorFlow 操作指定特定设备时,我们需要知道 TensorFlow 如何引用这些设备。 TensorFlow 中的设备名称遵循以下约定:

| 设备 | 设备名称 | | — | — | — | | 主 CPU | /CPU:0 | | 第二个 CPU | /CPU:1 | | 主 GPU | /GPU:0 | | 第二个 GPU | /GPU:1 | | 第三个 GPU | /GPU:2 |

更多

幸运的是,在云中运行 TensorFlow 现在比以往更容易。许多云计算服务提供商都提供 GPU 实例,其中包含主 CPU 和强大的 GPU。 Amazon Web Services(AWS)具有 G 实例和 P2 实例,允许使用功能强大的 GPU,为 TensorFlow 流程提供极快的速度。您甚至可以免费选择 AWS Machine Images(AMI),它将在安装了 TensorFlow 的 GPU 实例的情况下启动选定的实例。

并行化 TensorFlow

为了扩展 TensorFlow 并行化的范围,我们还可以以分布式方式在完全不同的机器上从我们的图执行单独的操作。这个秘籍将告诉你如何。

准备

在 TensorFlow 发布几个月后,谷歌发布了分布式 TensorFlow,它是对 TensorFlow 生态系统的一次重大升级,并且允许在不同的工作机器上设置 TensorFlow 集群,并分享训练和评估的计算任务楷模。使用分布式 TensorFlow 就像为工作器设置参数一样简单,然后为不同的工作器分配不同的工作。

在这个秘籍中,我们将建立两个本地工作器并将他们分配到不同的工作。

操作步骤

  1. 首先,我们加载 TensorFlow 并使用配置字典文件(端口22222223)定义我们的两个本地 worker,如下所示:
代码语言:javascript复制
import tensorflow as tf 
# Cluster for 2 local workers (tasks 0 and 1): 
cluster = tf.train.ClusterSpec({'local': ['localhost:2222', 'localhost:2223']}) 
  1. 现在,我们将两个工作器连接到服务器并使用以下任务编号标记它们:
代码语言:javascript复制
server = tf.train.Server(cluster, job_name="local", task_index=0) 
server = tf.train.Server(cluster, job_name="local", task_index=1) 
  1. 现在我们将让每个工作器完成一项任务。第一个工作器将初始化两个矩阵(每个矩阵将是 25 乘 25)。第二个工作器将找到所有元素的总和。然后,我们将自动分配两个总和的总和并打印输出,如下所示:
代码语言:javascript复制
mat_dim = 25 
matrix_list = {} 
with tf.device('/job:local/task:0'): 
    for i in range(0, 2): 
        m_label = 'm_{}'.format(i) 
        matrix_list[m_label] = tf.random_normal([mat_dim, mat_dim]) 
# Have each worker calculate the sums 
sum_outs = {} 
with tf.device('/job:local/task:1'): 
    for i in range(0, 2): 
        A = matrix_list['m_{}'.format(i)] 
        sum_outs['m_{}'.format(i)] = tf.reduce_sum(A) 
    # Sum all the sums 
    summed_out = tf.add_n(list(sum_outs.values())) 
with tf.Session(server.target) as sess: 
    result = sess.run(summed_out) 
    print('Summed Values:{}'.format(result)) 
  1. 输入上面的代码后,我们可以在命令提示符下运行以下命令:
代码语言:javascript复制
$ python3 parallelizing_tensorflow.py 
I tensorflow/core/distributed_runtime/rpc/grpc_channel.cc:197] Initialize GrpcChannelCache for job local -> {0 -> localhost:2222, 1 -> localhost:2223} 
I tensorflow/core/distributed_runtime/rpc/grpc_server_lib.cc:206] Started server with target: grpc://localhost:2222 
I tensorflow/core/distributed_runtime/rpc/grpc_channel.cc:197] Initialize GrpcChannelCache for job local -> {0 -> localhost:2222, 1 -> localhost:2223} 
I tensorflow/core/distributed_runtime/rpc/grpc_server_lib.cc:206] Started server with target: grpc://localhost:2223 
I tensorflow/core/distributed_runtime/master_session.cc:928] Start master session 252bb6f530553002 with config:  
Summed Values:-21.12611198425293 

工作原理

使用分布式 TensorFlow 非常简单。您所要做的就是将工作器 IP 分配给具有名称的服务器。然后,可以手动或自动为工作器分配操作。

将 TensorFlow 投入生产

如果我们想在生产环境中使用我们的机器学习脚本,我们首先需要考虑一些要点作为最佳实践。在本节中,我们将概述其中的一些内容。

准备

在本文中,我们想总结并浓缩将 TensorFlow 投入生产的各种技巧。我们将介绍如何最好地保存和加载词汇表,图,变量和模型检查点。我们还将讨论如何使用 TensorFlow 的命令行参数解析器并更改 TensorFlow 的日志记录详细程度。

操作步骤

  1. 运行 TensorFlow 程序时,我们可能需要检查内存中是否已存在其他图会话,或者在调试程序后是否清除了图会话。我们可以使用以下命令行来完成此任务:
代码语言:javascript复制
from tensorflow.python.framework import ops 
ops.reset_default_graph() 
  1. 在处理文本(或任何数据管道)时,我们需要确保我们保存处理数据的方式,以便我们可以以相同的方式处理未来的评估数据。例如,如果我们处理文本,我们需要确保我们可以保存并加载词汇表。以下代码是如何使用JSON库保存词汇表字典的示例:
代码语言:javascript复制
import json word_list = ['to', 'be', 'or', 'not', 'to', 'be']
vocab_list = list(set(word_list))
vocab2ix_dict = dict(zip(vocab_list, range(len(vocab_list))))
ix2vocab_dict = {val:key for key,val in vocab2ix_dict.items()}

# Save vocabulary
import json
with open('vocab2ix_dict.json', 'w') as file_conn:
    json.dump(vocab2ix_dict, file_conn)

# Load vocabulary
with open('vocab2ix_dict.json', 'r') as file_conn:
    vocab2ix_dict = json.load(file_conn)

在这里,我们以JSON格式保存了词汇词典,但我们也可以将其保存在text文件,csv甚至二进制格式中。如果词汇量很大,则首选二进制文件。您还可以考虑使用 Pickle 库来创建pkl二进制文件,但请注意,Pickle 文件在库和 Python 版本之间不能很好地转换。

  1. 为了保存模型图和变量,我们创建了一个Saver()操作并将其添加到图中。建议我们在训练期间定期保存模型。要保存模型,请输入以下代码:
代码语言:javascript复制
After model declaration, add a saving operations 
saver = tf.train.Saver() 
# Then during training, save every so often, referencing the training generation 
for i in range(generations): 
    ... 
    if i%save_every == 0: 
        saver.save(sess, 'my_model', global_step=step) 
# Can also save only specific variables: 
saver = tf.train.Saver({"my_var": my_variable})

请注意,Saver()操作也会采用其他参数。如前面的示例所示,它可以使用变量和张量字典来保存特定元素。每隔n小时也可以检查一次,定期执行保存操作。默认情况下,保存操作仅保留最后五个模型保存(出于空间考虑)。可以使用maximum_to_keep选项更改此设置。

  1. 在保存模型之前,请务必命名模型的重要操作。如果 TensorFlow 没有名称,则没有简单的方法来加载特定的占位符,操作或变量。 TensorFlow 中的大多数操作和函数都接受name参数,如下例所示:
代码语言:javascript复制
conv_weights = tf.Variable(tf.random_normal(), name='conv_weights') 
loss = tf.reduce_mean(... , name='loss') 
  1. TensorFlow 还可以使用tf.apps.flags库在命令行上轻松执行参数解析。使用这些函数,我们可以定义字符串,浮点数,整数或布尔值的命令行参数,如下面的代码片段所示。使用这些标志定义,我们可以运行tf.app.run(),它将使用以下标志参数运行main()函数:
代码语言:javascript复制
tf.flags.DEFINE_string("worker_locations", "", "List of worker addresses.")
tf.flags.DEFINE_float('learning_rate', 0.01, 'Initial learning rate.')
tf.flags.DEFINE_integer('generations', 1000, 'Number of training generations.')
tf.flags.DEFINE_boolean('run_unit_tests', False, 'If true, run tests.')
FLAGS = tf.flags.FLAGS
# Need to define a 'main' function for the app to run 
def main(_): 
    worker_ips = FLAGS.worker_locations.split(",") 
    learning_rate = FLAGS.learning_rate 
    generations = FLAGS.generations 
    run_unit_tests = FLAGS.run_unit_tests

# Run the Tensorflow app 
if __name__ == "__main__":
    # The following is looking for a "main()" function to run and will pass.
    tf.app.run()
    # Can modify this to be more custom:
    tf.app.run(main=my_main_function(), argv=my_arguments)
  1. TensorFlow 具有内置日志记录,我们可以为其设置级别参数。我们可以设定的水平是DEBUGINFOWARNERRORFATAL。默认为WARN,如下所示:
代码语言:javascript复制
tf.logging.set_verbosity(tf.logging.WARN) 
# WARN is the default value, but to see more information, you can set it to 
#    INFO or DEBUG 
tf.logging.set_verbosity(tf.logging.DEBUG) 

工作原理

在本节中,我们提供了在 TensorFlow 中创建生产级代码的提示。我们想介绍应用标志,模型保存和日志记录等概念,以便用户可以使用这些工具一致地编写代码,并了解在其他代码中看到这些工具时的含义。还有许多其他方法可以编写好的生产代码,但下面的秘籍中将显示完整的示例。

生产环境 TensorFlow 的一个例子

生产机器学习模型的一个好方法是将训练和评估程序分开。在本节中,我们将说明一个评估脚本,该脚本已经扩展到包括单元测试,模型保存和加载以及评估。

准备

在本文中,我们将向您展示如何使用上述标准实现评估脚本。代码实际上包含一个训练脚本和一个评估脚本,但是对于这个秘籍,我们只会向您展示评估脚本。提醒一下,两个脚本都可以在在线 GitHub 仓库和 Packt 官方仓库中看到。

对于即将到来的示例,我们将实现第 9 章,回归神经网络中的第一个 RNN 示例,该示例试图预测文本消息是垃圾邮件还是非垃圾邮件。我们将假设 RNN 模型与词汇一起被训练和保存。

操作步骤

  1. 首先,我们首先加载必要的库并声明 TensorFlow 应用标志,如下所示:
代码语言:javascript复制
import os 
import re 
import numpy as np 
import tensorflow as tf 
from tensorflow.python.framework import ops 
ops.reset_default_graph() 
# Define App Flags
tf.flags.DEFINE_string("storage_folder", "temp", "Where to store model and data.")
tf.flags.DEFINE_float('learning_rate', 0.0005, 'Initial learning rate.')
tf.flags.DEFINE_float('dropout_prob', 0.5, 'Per to keep probability for dropout.')
tf.flags.DEFINE_integer('epochs', 20, 'Number of epochs for training.')
tf.flags.DEFINE_integer('batch_size', 250, 'Batch Size for training.')
tf.flags.DEFINE_integer('rnn_size', 15, 'RNN feature size.')
tf.flags.DEFINE_integer('embedding_size', 25, 'Word embedding size.')
tf.flags.DEFINE_integer('min_word_frequency', 20, 'Word frequency cutoff.')
tf.flags.DEFINE_boolean('run_unit_tests', False, 'If true, run tests.')

FLAGS = tf.flags.FLAGS
  1. 接下来,我们声明一个文本清理函数。这与训练脚本中使用的清洁函数相同,如下所示:
代码语言:javascript复制
def clean_text(text_string): 
    text_string = re.sub(r'([^sw]|_|[0-9]) ', '', text_string) 
    text_string = " ".join(text_string.split()) 
    text_string = text_string.lower() 
    return text_string 
  1. 现在,我们需要加载以下词汇处理函数:
代码语言:javascript复制
def load_vocab(): 
    vocab_path = os.path.join(FLAGS.storage_folder, "vocab") 
    vocab_processor = tf.contrib.learn.preprocessing.VocabularyProcessor.restore(vocab_path) 
    return vocab_processor 
  1. 现在我们有了清理文本的方法,并且还有一个词汇处理器,我们可以将这些函数组合起来为给定的文本创建数据处理管道,如下所示:
代码语言:javascript复制
def process_data(input_data, vocab_processor): 
    input_data = clean_text(input_data) 
    input_data = input_data.split() 
    processed_input = np.array(list(vocab_processor.transform(input_data))) 
    return processed_input 
  1. 接下来,我们需要一种方法来获取要评估的数据。为此,我们将要求用户在屏幕上键入文本。然后,我们将处理文本并返回以下处理过的文本:
代码语言:javascript复制
def get_input_data(): 
    input_text = input("Please enter a text message to evaluate: ") 
    vocab_processor = load_vocab() 
    return process_data(input_text, vocab_processor)

对于此示例,我们通过要求用户键入来创建评估数据。虽然许多应用将通过提供的文件或 API 请求获取数据,但我们可以相应地更改此输入数据函数。

  1. 对于单元测试,我们需要使用以下代码确保我们的文本清理函数正常运行:
代码语言:javascript复制
class clean_test(tf.test.TestCase): 
    # Make sure cleaning function behaves correctly 
    def clean_string_test(self): 
        with self.test_session(): 
            test_input = '--Tensorflow's so Great! Dont you think so?   ' 
            test_expected = 'tensorflows so great don you think so' 
            test_out = clean_text(test_input) 
            self.assertEqual(test_expected, test_out) 
  1. 现在我们有了模型和数据,我们可以运行main函数。main函数将获取数据,设置图,加载变量,输入处理过的数据,然后打印输出,如下面的代码片段所示:
代码语言:javascript复制
def main(args): 
    # Get flags 
    storage_folder = FLAGS.storage_folder 
    # Get user input text 
    x_data = get_input_data() 

    # Load model 
    graph = tf.Graph() 
    with graph.as_default(): 
        sess = tf.Session() 
        with sess.as_default(): 
            # Load the saved meta graph and restore variables 
            saver = tf.train.import_meta_graph("{}.meta".format(os.path.join(storage_folder, "model.ckpt"))) 
            saver.restore(sess, os.path.join(storage_folder, "model.ckpt")) 
            # Get the placeholders from the graph by name 
            x_data_ph = graph.get_operation_by_name("x_data_ph").outputs[0] 
            dropout_keep_prob = graph.get_operation_by_name("dropout_keep_prob").outputs[0] 
            probability_outputs = graph.get_operation_by_name("probability_outputs").outputs[0] 
            # Make the prediction 
            eval_feed_dict = {x_data_ph: x_data, dropout_keep_prob: 1.0} 
            probability_prediction = sess.run(tf.reduce_mean(probability_outputs, 0), eval_feed_dict) 

            # Print output (Or save to file or DB connection?) 
            print('Probability of Spam: {:.4}'.format(probability_prediction[1])) 
  1. 最后,要运行main()函数或单元测试,请使用以下代码:
代码语言:javascript复制
if __name__ == "__main__": 
    if FLAGS.run_unit_tests: 
        # Perform unit tests 
        tf.test.main() 
    else: 
        # Run evaluation 
        tf.app.run() 

工作原理

为了评估模型,我们能够使用 TensorFlow 的应用标志加载命令行参数,加载模型和词汇处理器,然后通过模型运行处理过的数据并进行预测。

请记住通过命令行运行此脚本,并在创建模型和词汇表字典之前检查是否运行了训练脚本。

使用 TensorFlow 服务

在本节中,我们将向您展示如何设置 RNN 模型以预测 TensorFlow 上的垃圾邮件或非垃圾邮件文本消息。我们将首先说明如何以 protobuf 格式保存模型,然后将模型加载到本地服务器,监听端口9000以进行输入。

准备

我们通过鼓励读者阅读 TensorFlow 服务网站上的官方文档和简短教程来开始本节。

对于这个例子,我们将在第 9 章,循环神经网络中重用我们在预测垃圾邮件中使用的大部分 RNN 代码和 RNNs 秘籍。我们将更改模型保存代码,以便将 protobuf 模型保存在使用 TensorFlow 服务所需的正确文件夹结构中。

请注意,本章中的所有脚本都应该从命令行 bash 提示符执行。

有关更新的安装说明,请访问官方安装站点。正常安装就像向 Linux 源添加 gpg-key 并运行以下安装命令一样简单:

代码语言:javascript复制
$ sudo apt install tensorflow-model-server

操作步骤

  1. 在这里,我们将以与以前相同的方式开始,通过加载必要的库并设置 TensorFlow 标志,如下所示:
代码语言:javascript复制
import os
import re
import io
import sys
import requests
import numpy as np
import tensorflow as tf
from zipfile import ZipFile
from tensorflow.python.framework import ops

ops.reset_default_graph()

# Define App Flags
tf.flags.DEFINE_string("storage_folder", "temp", "Where to store model and data.")
tf.flags.DEFINE_float('learning_rate', 0.0005, 'Initial learning rate.')
tf.flags.DEFINE_float('dropout_prob', 0.5, 'Per to keep probability for dropout.')
tf.flags.DEFINE_integer('epochs', 20, 'Number of epochs for training.')
tf.flags.DEFINE_integer('batch_size', 250, 'Batch Size for training.')
tf.flags.DEFINE_integer('rnn_size', 15, 'RNN feature size.')
tf.flags.DEFINE_integer('embedding_size', 25, 'Word embedding size.')
tf.flags.DEFINE_integer('min_word_frequency', 20, 'Word frequency cutoff.')
tf.flags.DEFINE_boolean('run_unit_tests', False, 'If true, run tests.')

FLAGS = tf.flags.FLAGS
  1. 我们将以完全相同的方式继续完成脚本。为简洁起见,我们只会在训练脚本中包含差异,这就是我们如何保存 protobuf 模型。这是通过在训练完成后插入以下代码来完成的:

请注意此代码与教程代码的相似之处。这里的主要区别在于模型名称,版本号以及我们正在保存 RNN 而不是 CNN 的事实。

代码语言:javascript复制
# Save the finished model for TensorFlow Serving (pb file)
# Here, it's our storage folder / version number
out_path = os.path.join(tf.compat.as_bytes(os.path.join(storage_folder, '1')))
print('Exporting finished model to : {}'.format(out_path))
builder = tf.saved_model.builder.SavedModelBuilder(out_path)

# Build the signature_def_map.
classification_inputs = tf.saved_model.utils.build_tensor_info(x_data_ph)
classification_outputs_classes = tf.saved_model.utils.build_tensor_info(rnn_model_outputs)

classification_signature = (tf.saved_model.signature_def_utils.build_signature_def(
                inputs={tf.saved_model.signature_constants.CLASSIFY_INPUTS:   
                        classification_inputs},
                outputs={tf.saved_model.signature_constants.CLASSIFY_OUTPUT_CLASSES: 
                         classification_outputs_classes},
                method_name=tf.saved_model.signature_constants.CLASSIFY_METHOD_NAME))

        tensor_info_x = tf.saved_model.utils.build_tensor_info(x_data_ph)
        tensor_info_y = tf.saved_model.utils.build_tensor_info(y_output_ph)

        prediction_signature = (
            tf.saved_model.signature_def_utils.build_signature_def(
                inputs={'texts': tensor_info_x},
                outputs={'scores': tensor_info_y},
                method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME))

        legacy_init_op = tf.group(tf.tables_initializer(), name='legacy_init_op')
        builder.add_meta_graph_and_variables(
            sess, [tf.saved_model.tag_constants.SERVING],
            signature_def_map={
                'predict_spam': prediction_signature,
                tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
                    classification_signature,
            },
            legacy_init_op=legacy_init_op)

        builder.save()

        print('Done exporting!')
  1. 对我们来说,重要的是要意识到 TensorFlow Serving 需要特定的文件或文件夹结构来加载模型。该脚本将以以下格式安装文件:

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-oZO6oUMt-1681566911077)(https://gitcode.net/apachecn/apachecn-dl-zh/-/raw/master/docs/tf-ml-cookbook-2e-zh/img/4b09d4e9-2abf-4884-8a45-ddef5b4247db.png)]

A screenshot of the directory structure that TensorFlow Serving expects.

上面的屏幕截图显示了所需的目录结构。在其中,我们有我们定义的数据目录temp,然后是我们的模型版本号1。在版本号目录中,我们保存我们的 protobuf 模型和一个包含要保存的所需变量的variables文件夹。

我们应该知道,在我们的数据目录中,TensorFlow 服务将查找整数文件夹。 TensorFlow 服务将自动启动并在最大整数下获取模型。这意味着要部署新模型,我们需要将其标记为版本 2,并将其粘贴在也标记为2的新文件夹下。然后,TensorFlow 服务将自动获取模型。

  1. 要启动我们的服务器,我们使用端口,model_namemodel_base_path参数调用命令tensorflow_model_server。然后,TensorFlow Serving 查找版本号文件夹并选择最大版本编号的模型。然后它将它部署到机器上,命令通过作为参数给出的端口运行。在以下示例中,我们在本地计算机(0.0.0.0)上运行,并且接受的默认端口是9000
代码语言:javascript复制
$ tensorflow_model_server --port=9000 --model_name=spam_ham --model_base_path=<directory of our code>/tensorflow_cookbook/10_Taking_TensorFlow_to_Production/06_Using_TensorFlow_Serving/temp/

2018-08-09 12:05:16.206712: I tensorflow_serving/model_servers/main.cc:153] Building single TensorFlow model file config: model_name: spam_ham model_base_path: .../temp/
2018-08-09 12:05:16.206874: I tensorflow_serving/model_servers/server_core.cc:459] Adding/updating models.
2018-08-09 12:05:16.206903: I tensorflow_serving/model_servers/server_core.cc:514] (Re-)adding model: spam_ham
2018-08-09 12:05:16.307681: I tensorflow_serving/core/basic_manager.cc:716] Successfully reserved resources to load servable {name: spam_ham version: 1}
2018-08-09 12:05:16.307744: I tensorflow_serving/core/loader_harness.cc:66] Approving load for servable version {name: spam_ham version: 1}
2018-08-09 12:05:16.307773: I tensorflow_serving/core/loader_harness.cc:74] Loading servable version {name: spam_ham version: 1}
2018-08-09 12:05:16.307829: I external/org_tensorflow/tensorflow/contrib/session_bundle/bundle_shim.cc:360] Attempting to load native SavedModelBundle in bundle-shim from: .../temp/1
2018-08-09 12:05:16.307867: I external/org_tensorflow/tensorflow/cc/saved_model/loader.cc:242] Loading SavedModel with tags: { serve }; from: .../temp/1
2018-08-09 12:05:16.313811: I external/org_tensorflow/tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2 FMA
2018-08-09 12:05:16.325866: I external/org_tensorflow/tensorflow/cc/saved_model/loader.cc:161] Restoring SavedModel bundle.
2018-08-09 12:05:16.329290: I exte

0 人点赞