图的一种通用格式以及图的相关基础算法

2023-04-25 11:32:15 浏览数 (1)

将图拆解为点、边、图三种结构

点的定义

一个点包含自己的值、入度、出度、直接相邻的点(由自己出发的点)、相连的边(由自己出发的点)

代码语言:javascript复制
public class Node {
    public int value;
    public int in;
    public int out;
    public ArrayList<Node> nexts;
    public ArrayList<Edge> edges;

    public Node(int value) {
        this.value = value;
        int in = 0;
        int out = 0;
        nexts = new ArrayList<>();
        edges = new ArrayList<>();
    }
}

边的定义

一条边包含自己的权重、起点和终点

代码语言:javascript复制
public class Edge {
	public int weight;
	public Node from;
	public Node to;
	public Edge(int weight, Node from, Node to) {
		this.weight = weight;
		this.from = from;
		this.to = to;
	}
}
图的定义
代码语言:javascript复制
public class Graph {
    //K:点的编号,V:点
	public HashMap<Integer, Node> nodes;
	public HashSet<Edge> edges;
	
	public Graph() {
		nodes = new HashMap<>();
		edges = new HashSet<>();
	}
}
建立一个图
代码语言:javascript复制
public static Graph createGraph(Integer[][] matrix) {
	Graph graph = new Graph();
	for (int i = 0; i < matrix.length; i  ) { 
		// matrix[0][0], matrix[0][1]  matrix[0][2]
		Integer weight = matrix[i][0];
		Integer from = matrix[i][1];
		Integer to = matrix[i][2];
		//如果from和to不存在图中,则先加到图中去
		if (!graph.nodes.containsKey(from)) {
			graph.nodes.put(from, new Node(from));
		}
		if (!graph.nodes.containsKey(to)) {
			graph.nodes.put(to, new Node(to));
		}
		//得到From和to两个点,建立边
		Node fromNode = graph.nodes.get(from);
		Node toNode = graph.nodes.get(to);
		Edge newEdge = new Edge(weight, fromNode, toNode);
		//from 出度  ,相邻点  , 相邻边  ; to点入度  , 图的边  
		fromNode.nexts.add(toNode);
		fromNode.out  ;
		toNode.in  ;
		fromNode.edges.add(newEdge);
		graph.edges.add(newEdge);
	}
	return graph;
}
图的宽度优先遍历(BFS)

按照上面的结构遍历BFS只用输入一个点就可以了。从一个点开始,将其放入到队列和集合中,如果队列不为空则弹出队头元素打印,并将它相邻的点放入队列中(没进入过set),当队列不为空是就打印元素。

代码语言:javascript复制
public class BFS {
    public static void bfs(Node node) {
        if (node == null) {
            return;
        }
        Queue<Node> queue = new LinkedList<>();
        HashSet<Node> set = new HashSet<>();
        queue.add(node);
        set.add(node);
        while (!queue.isEmpty()) {
            Node cur = queue.poll();
            System.out.println(cur.va lue);
            for (Node next : cur.nexts) {
            //防止重复加入元素
                if (!set.contains(next)) {
                    set.add(next);
                    queue.add(next);
                }
            }
        }
    }
}
图的深度优先遍历(DFS)

通过一个stack和hashset完成DFS,stack相当与存储当前遍历的一条路径。 从任意一个节点开始,将其放入栈和集合中并打印。当栈不为空时,弹出栈顶作为当前节点,再遍历当前的节点的相邻节点。当前节点任意一个相邻节点没有进过栈则,把当前节点和相邻节点压入栈中去,记录并打印相邻点 break。

代码语言:javascript复制
public class DFS {
    public static void dfs(Node node) {
        if (node == null) {
            return;
        }
        Stack<Node> stack = new Stack<>();
        HashSet<Node> set = new HashSet<>();
        stack.add(node);
        set.add(node);
        System.out.println(node.value);
        while (!stack.isEmpty()) {
            Node cur = stack.pop();
            for (Node next : cur.nexts){
                if (!set.contains(next)) {
                    stack.push(cur);
                    stack.push(next);
                    set.add(next);
                    System.out.println(next.value);
                    break;
                }
            }
        }
}
拓扑排序

拓扑排序算法 1)在图中找到所有入度为0的点 2)把所有入度为0的点在图中删掉,继续找入度为0的点输出,周而复始 3)图中所有点都被删除后,一次输出的顺序就是拓扑排序 要求:有向图且其中没有环 应用:事件安排、编译顺序 意思就是根据一张有向无环图玩安排时间发生的顺序

代码语言:javascript复制
public class TopologySort {
    public static List<Node> sortedTopology(Graph graph) {
        //Key:某一个node
        //value:剩余的入度
        //统计每个节点的入度
        HashMap<Node, Integer> inMap = new HashMap<>();
        //剩余 入度为0的点,才能进入这个队列
        Queue<Node> zeroInQueue = new LinkedList<>();
        for (Node node : graph.nodes.values()) {
            inMap.put(node, node.in);
            if (node.in == 0) {
                zeroInQueue.add(node);
            }
        }
        //result存储排序结果
        List<Node> result = new ArrayList<>();
        //弹出元素,加入到结果中去
        while (!zeroInQueue.isEmpty()) {
            Node cur = zeroInQueue.poll();
            result.add(cur);
            //消除前面入度为0的点的影响,如果产生了新的入度为0的点
            //则加入队列中去
            for (Node next : cur.nexts) {
                inMap.put(next, inMap.get(next) - 1);
                if (inMap.get(next) == 0) {
                    zeroInQueue.add(next);
                }
            }
        }
        return result;
    }
}

图的最小生成树的问题

最小生成树:在连通网的所有生成树中,所有边的代价和最小的生成树,称为最小生成树

Kruskal算法

使用并查集来处理这个问题。将所有的边根据权值大小排序。 1)总是从权值最小的边开始考虑,依次考察权值一次变大的边 2)当前的边要么进入最小生成树的集合,要么被舍弃 3)如果当前的边进入最小生成树的集合中不会形成环,就要当前边 4)如果当前的边进入最小生成树的集合中会形成环,就不要当前边 5)考察完所有边之后,最小生成树的集合也得到了

代码语言:javascript复制
public class Kruskal {
    public static class UnionFind {
        // key某一个节点, value key节点往上的节点
        private HashMap<Node, Node> fatherMap;
        // key某一个集合的代表节点,value key所在的集合的节点个数
        private HashMap<Node, Integer> sizeMap;

        public UnionFind() {
            fatherMap = new HashMap<Node, Node>();
            sizeMap = new HashMap<Node, Integer>();
        }

        public void makeSet(Collection<Node> nodes) {
            fatherMap.clear();
            sizeMap.clear();
            for (Node node : nodes) {
                fatherMap.put(node, node);
                sizeMap.put(node, 1);
            }
        }

        private Node findFather(Node cur) {
            Stack<Node> path = new Stack<>();
            while(cur != fatherMap.get(cur)) {
                path.add(cur);
                cur = fatherMap.get(cur);
            }
            while (!path.isEmpty()) {
                fatherMap.put(path.pop(), cur);
            }
            return cur;
        }

        public boolean isSameSet(Node a, Node b) {
            return findFather(a) == findFather(b);
        }

        public void union(Node a, Node b) {
            if (a == null || b == null) {
                return;
            }
            Node headA = findFather(a);
            Node headB = findFather(b);
            if (headA != headB) {
                int aSetSize = sizeMap.get(headA);
                int bSetSize = sizeMap.get(headB);
                if (aSetSize <= bSetSize) {
                    fatherMap.put(headA, headB);
                    sizeMap.put(headB, aSetSize   bSetSize);
                    sizeMap.remove(headA);
                } else {
                    fatherMap.put(headB, headA);
                    sizeMap.put(headA, aSetSize   bSetSize);
                    sizeMap.remove(headB);
                }
            }
        }
    }
//比较边的权值大小
    public static class EdgeComparator implements Comparator<Edge> {

        @Override
        public int compare(Edge o1, Edge o2) {
            return o1.weight - o2.weight;
        }
    }

    public static Set<Edge> kruskalMST(Graph graph) {
        UnionFind unionFind = new UnionFind();
        unionFind.makeSet(graph.nodes.values());
        //使用小根堆
        PriorityQueue<Edge> priorityQueue = new PriorityQueue<>(new EdgeComparator());
        for (Edge edge : graph.edges) {
            priorityQueue.add(edge);
        }
        Set<Edge> result = new HashSet<>();
        while (!priorityQueue.isEmpty()) {
            Edge edge = priorityQueue.poll();
            //如果边的两点不是同一集合,加入一个集合中去
            if (!unionFind.isSameSet(edge.from, edge.to)) {
                result.add(edge);
                unionFind.union(edge.from, edge.to);
            }
        }
        return result;
    }
}
Prim算法

1)指定一个出发点将其解锁,并将其相连的边一同解锁 2)在所有解锁的边里选一个最小的边,然后看这个边两侧有没有新节点,则选择这条边,并解锁该新节点 3) 新节点相连的所有边被解锁

代码语言:javascript复制
import java.util.Comparator;
import java.util.HashSet;
import java.util.PriorityQueue;
import java.util.Set;

public class Prim {
    public static class EdgeComparator implements Comparator<Edge> {

        @Override
        public int compare(Edge o1, Edge o2) {
            return o1.weight - o2.weight;
        }
    }

    public static Set<Edge> primMST(Graph graph){
        PriorityQueue<Edge> priorityQueue = new PriorityQueue<>(new EdgeComparator());
        HashSet<Node> nodeSet  = new HashSet<>();
        Set<Edge> result = new HashSet<>();
        for (Node node : graph.nodes.values()) {
            if (!nodeSet.contains(node)){
                nodeSet.add(node);
                for (Edge edge : node.edges) {
                    priorityQueue.add(edge);
                }
                while (!priorityQueue.isEmpty()) {
                    Edge edge = priorityQueue.poll();
                    Node toNode = edge.to;
                    if (!nodeSet.contains(toNode)) {
                        nodeSet.add(toNode);
                        result.add(edge);
                        for (Edge nextEdge : toNode.edges) {
                            priorityQueue.add(nextEdge);
                        }
                    }
                }
            }
        }
        return result;
    }

    public static int prim(int[][] graph) {
        int size = graph.length;
        int[] distance = new int[size];
        boolean[] visit = new boolean[size];
        visit[0] = true;
        for (int i = 0; i < size; i  ){
            distance[i] = graph[0][i];
        }
        int sum = 0;
        for (int i = 0; i < size; i  ) {
            int minPath = Integer.MAX_VALUE;
            int minIndex = -1;
            for (int j = 0; j < size; j  ) {
                if(!visit[j] && distance[j] < minPath) {
                    minPath =distance[j];
                    minIndex = j;
                }
            }
            if (minIndex == -1){
                return sum;
            }
            visit[minIndex] = true;
            sum  = minPath;
            for (int j = 0; j < size; j  ){
                if (!visit[j] && distance[j] > graph[minIndex][j]) {
                    distance[j] = graph[minIndex][j];
                }
            }
        }
        return sum;
    }
}
Dijkstra算法

Dijkstra算法用于计算带权有向图中单源最短路径。

代码语言:javascript复制
public class Dijkstra {

	public static HashMap<Node, Integer> dijkstra1(Node from) {
		// 从head出发到所有点的最小距离
		// key : 从head出发到达key
		// value : 从head出发到达key的最小距离
		// 如果在表中,没有T的记录,含义是从head出发到T这个点的距离为正无穷
		HashMap<Node, Integer> distanceMap = new HashMap<>();
		distanceMap.put(from, 0);
		// 已经求过距离的节点,存在selectedNodes中,以后再也不碰
		HashSet<Node> selectedNodes = new HashSet<>();
		// from 0
		Node minNode = getMinDistanceAndUnselectedNode(distanceMap, selectedNodes);
		while (minNode != null) {
			int distance = distanceMap.get(minNode);
			for (Edge edge : minNode.edges) {
				Node toNode = edge.to;
				if (!distanceMap.containsKey(toNode)) {
					distanceMap.put(toNode, distance   edge.weight);
				} else {
					distanceMap.put(edge.to, 
							Math.min(distanceMap.get(toNode), distance   edge.weight));
				}
			}
			selectedNodes.add(minNode);
			minNode = getMinDistanceAndUnselectedNode(distanceMap, selectedNodes);
		}
		return distanceMap;
	}

	public static Node getMinDistanceAndUnselectedNode(
			HashMap<Node, Integer> distanceMap, 
			HashSet<Node> touchedNodes) {
		Node minNode = null;
		int minDistance = Integer.MAX_VALUE;
		for (Entry<Node, Integer> entry : distanceMap.entrySet()) {
			Node node = entry.getKey();
			int distance = entry.getValue();
			if (!touchedNodes.contains(node) && distance < minDistance) {
				minNode = node;
				minDistance = distance;
			}
		}
		return minNode;
	}

	public static class NodeRecord {
		public Node node;
		public int distance;

		public NodeRecord(Node node, int distance) {
			this.node = node;
			this.distance = distance;
		}
	}

	public static class NodeHeap {
		private Node[] nodes; // 实际的堆结构
		// key 某一个node, value 上面堆中的位置
		private HashMap<Node, Integer> heapIndexMap;
		// key 某一个节点, value 从源节点出发到该节点的目前最小距离
		private HashMap<Node, Integer> distanceMap;
		private int size; // 堆上有多少个点

		public NodeHeap(int size) {
			nodes = new Node[size];
			heapIndexMap = new HashMap<>();
			distanceMap = new HashMap<>();
			size = 0;
		}

		public boolean isEmpty() {
			return size == 0;
		}

		// 有一个点叫node,现在发现了一个从源节点出发到达node的距离为distance
		// 判断要不要更新,如果需要的话,就更新
		public void addOrUpdateOrIgnore(Node node, int distance) {
			if (inHeap(node)) {
				distanceMap.put(node, Math.min(distanceMap.get(node), distance));
				insertHeapify(node, heapIndexMap.get(node));
			}
			if (!isEntered(node)) {
				nodes[size] = node;
				heapIndexMap.put(node, size);
				distanceMap.put(node, distance);
				insertHeapify(node, size  );
			}
		}

		public NodeRecord pop() {
			NodeRecord nodeRecord = new NodeRecord(nodes[0], distanceMap.get(nodes[0]));
			swap(0, size - 1);
			heapIndexMap.put(nodes[size - 1], -1);
			distanceMap.remove(nodes[size - 1]);
			// free C  同学还要把原本堆顶节点析构,对java同学不必
			nodes[size - 1] = null;
			heapify(0, --size);
			return nodeRecord;
		}

		private void insertHeapify(Node node, int index) {
			while (distanceMap.get(nodes[index]) 
					< distanceMap.get(nodes[(index - 1) / 2])) {
				swap(index, (index - 1) / 2);
				index = (index - 1) / 2;
			}
		}

		private void heapify(int index, int size) {
			int left = index * 2   1;
			while (left < size) {
				int smallest = left   1 < size && distanceMap.get(nodes[left   1]) < distanceMap.get(nodes[left])
						? left   1
						: left;
				smallest = distanceMap.get(nodes[smallest]) 
						< distanceMap.get(nodes[index]) ? smallest : index;
				if (smallest == index) {
					break;
				}
				swap(smallest, index);
				index = smallest;
				left = index * 2   1;
			}
		}

		private boolean isEntered(Node node) {
			return heapIndexMap.containsKey(node);
		}

		private boolean inHeap(Node node) {
			return isEntered(node) && heapIndexMap.get(node) != -1;
		}

		private void swap(int index1, int index2) {
			heapIndexMap.put(nodes[index1], index2);
			heapIndexMap.put(nodes[index2], index1);
			Node tmp = nodes[index1];
			nodes[index1] = nodes[index2];
			nodes[index2] = tmp;
		}
	}

	// 改进后的dijkstra算法
	// 从head出发,所有head能到达的节点,生成到达每个节点的最小路径记录并返回
	public static HashMap<Node, Integer> dijkstra2(Node head, int size) {
		NodeHeap nodeHeap = new NodeHeap(size);
		nodeHeap.addOrUpdateOrIgnore(head, 0);
		HashMap<Node, Integer> result = new HashMap<>();
		while (!nodeHeap.isEmpty()) {
			NodeRecord record = nodeHeap.pop();
			Node cur = record.node;
			int distance = record.distance;
			for (Edge edge : cur.edges) {
				nodeHeap.addOrUpdateOrIgnore(edge.to, edge.weight   distance);
			}
			result.put(cur, distance);
		}
		return result;
	}

}

0 人点赞