你也可以动手参数有效微调:LoRA、Prefix Tuning、P-Tuning、Prompt Tuning

2023-04-27 14:26:04 浏览数 (2)

Part1前言

随着大语言模型的流行,如何让大模型在消费级GPU上进行微调训练成为了热点。掌握参数有效微调成为每个自然语言处理工程师必不可少的技能,正好hugging face开源了一个PEFT库,让我们也能够自己动手去了解参数有效微调。接下来以中文情感分析(二分类)去了解下参数有效微调。

使用的方法来自这些论文:

  1. LoRA: LORA: LOW-RANK ADAPTATION OF LARGE LANGUAGE MODELS
  2. Prefix Tuning: Prefix-Tuning: Optimizing Continuous Prompts for Generation, P-Tuning v2: Prompt Tuning Can Be Comparable to Fine-tuning Universally Across Scales and Tasks
  3. P-Tuning: GPT Understands, Too
  4. Prompt Tuning: The Power of Scale for Parameter-Efficient Prompt Tuning

Part2结果

接下来是一些的基础设置:

  • 数据:ChnSentiCorp_htl_all
  • 模型:hfl/chinese-roberta-wwm-ext
  • 显存:Tesla T4 15G
  • batch_size:64
  • epoch:3
  • max_length:86
  • lr:3e-4

以下是结果,各位自行分析吧:

全参数微调

prefix-tuning

prompt-tuning

p-tuning

LoRA

总参数

102269186

102637826

102284546

102498562

102564098

可训练参数

102269186

370178

16898

230914

296450

可训练参数占比(%)

100

0.3606

0.0165

0.2252

0.2890

占用GPU(15G)

5.5G

4.5G

5.0G

5.1G

4.8G

特有参数

/

num_virtual_tokens=20

num_virtual_tokens=20

num_virtual_tokens=20encoder_hidden_size=128

inference_mode=False, r=8, lora_alpha=16, lora_dropout=0.1

训练速度

1.13it/s

1.55 it/s

1.35 it/s

1.28 it/s

1.53 it/s

验证速度

3.36it/s

3.26 it/s

2.70 it/s

2.72 it/s

3.11 it/s

训练时长(分钟)

4.6838

4.3513

4.1768

4.1798

3.6353

验证loss

12.2706

12.1903

13.1484

9.1823

6.3543

准确率

0.6941

0.7617

0.7044

0.8461

0.8976

备注

Part3代码

最后附上所有代码:

代码语言:javascript复制
#!pip install peft==0.2.0
#!pip install transformers==4.28.1
#!pip install accelerate
#!pip install loralib
#!pip install evaluate
#!pip install tqdm
#!pip install datasets

import argparse
import os

import torch
from torch.optim import AdamW
from torch.utils.data import DataLoader
from peft import (
    get_peft_config,
    get_peft_model,
    get_peft_model_state_dict,
    set_peft_model_state_dict,
    PeftType,
    PrefixTuningConfig,
    PromptEncoderConfig,
    PromptTuningConfig,
    LoraConfig,
)

import evaluate
from datasets import load_dataset
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from tqdm import tqdm

import peft
print(peft.__version__)

#!wget https://raw.githubusercontent.com/SophonPlus/ChineseNlpCorpus/master/datasets/ChnSentiCorp_htl_all/ChnSentiCorp_htl_all.csv

data_file = "./ChnSentiCorp_htl_all.csv" # 数据文件路径,数据需要提前下载
# 加载数据集
dataset = load_dataset("csv", data_files=data_file)
dataset = dataset.filter(lambda x: x["review"] is not None)
datasets = dataset["train"].train_test_split(0.2, seed=123)

model_name_or_path = "hfl/chinese-roberta-wwm-ext"

if any(k in model_name_or_path for k in ("gpt", "opt", "bloom")):
    padding_side = "left"
else:
    padding_side = "right"

max_length = 86

tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, padding_side=padding_side)
if getattr(tokenizer, "pad_token_id") is None:
    tokenizer.pad_token_id = tokenizer.eos_token_id

def process_function(examples):
  tokenized_examples = tokenizer(examples["review"], truncation=True, max_length=max_length)
  tokenized_examples["labels"] = examples["label"]
  return tokenized_examples

tokenized_datasets = datasets.map(process_function, batched=True, remove_columns=datasets["train"].column_names)
accuracy_metric = evaluate.load("accuracy")

def compute_metrics(eval_pred):
  predictions, labels = eval_pred
  predictions = predictions.argmax(axis=-1)
  return accuracy_metric.compute(predictions=predictions, references=labels)


def collate_fn(examples):
    return tokenizer.pad(examples, padding="longest", return_tensors="pt")


# Instantiate dataloaders.
batch_size = 64
train_dataloader = DataLoader(tokenized_datasets["train"], shuffle=True, collate_fn=collate_fn, batch_size=batch_size)
eval_dataloader = DataLoader(
    tokenized_datasets["test"], shuffle=False, collate_fn=collate_fn, batch_size=batch_size
)

# 训练器配置
p_type = "lora"
if p_type == "prefix-tuning":
  peft_type = PeftType.PREFIX_TUNING
  peft_config = PrefixTuningConfig(task_type="SEQ_CLS", num_virtual_tokens=20)
elif p_type == "prompt-tuning":
  peft_type = PeftType.PROMPT_TUNING
  peft_config = PromptTuningConfig(task_type="SEQ_CLS", num_virtual_tokens=20)
elif p_type == "p-tuning":
  peft_type = PeftType.P_TUNING
  peft_config = PromptEncoderConfig(task_type="SEQ_CLS", num_virtual_tokens=20, encoder_hidden_size=128)
elif p_type == "lora":
  peft_type = PeftType.LORA
  peft_config = LoraConfig(task_type="SEQ_CLS", inference_mode=False, r=8, lora_alpha=16, lora_dropout=0.1)
# print(peft_type)

model = AutoModelForSequenceClassification.from_pretrained(model_name_or_path, num_labels=2)
if p_type is not None:
  model = get_peft_model(model, peft_config)
  model.print_trainable_parameters()
else:
  def print_trainable_parameters(model):
        """
        Prints the number of trainable parameters in the model.
        """
        trainable_params = 0
        all_param = 0
        for _, param in model.named_parameters():
            num_params = param.numel()
            # if using DS Zero 3 and the weights are initialized empty
            if num_params == 0 and hasattr(param, "ds_numel"):
                num_params = param.ds_numel

            all_param  = num_params
            if param.requires_grad:
                trainable_params  = num_params
        print(
            f"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param}"
        )

  print_trainable_parameters(model)

lr = 3e-4
num_epochs = 3
optimizer = AdamW(params=model.parameters(), lr=lr)

# Instantiate scheduler
lr_scheduler = get_linear_schedule_with_warmup(
    optimizer=optimizer,
    num_warmup_steps=0.06 * (len(train_dataloader) * num_epochs),
    num_training_steps=(len(train_dataloader) * num_epochs),
)

device = "cuda"
model.to(device)
metric = evaluate.load("accuracy")
import time
start = time.time()
for epoch in range(num_epochs):
    model.train()
    for step, batch in enumerate(tqdm(train_dataloader)):
        batch.to(device)
        outputs = model(**batch)
        loss = outputs.loss
        loss.backward()
        optimizer.step()
        lr_scheduler.step()
        optimizer.zero_grad()

    model.eval()
    total_loss = 0.
    for step, batch in enumerate(tqdm(eval_dataloader)):
        batch.to(device)
        with torch.no_grad():
            outputs = model(**batch)
            loss = outputs.loss
            total_loss  = loss
        predictions = outputs.logits.argmax(dim=-1)
        predictions, references = predictions, batch["labels"]
        metric.add_batch(
            predictions=predictions,
            references=references,
        )

    eval_metric = metric.compute()
    print(f"epoch {epoch} loss {total_loss}:", eval_metric)
end = time.time()

print("耗时:{}分钟".format((end-start) / 60))

参考:

https://github.com/huggingface/peft/

0 人点赞