[算法前沿]--013-为何AI无法解决一般智能问题?

2023-04-28 19:19:01 浏览数 (1)

目前的人工智能系统与人类的智力相去甚远。直接表现是:AI只在特定任务中表现优异,无法将其能力扩展到其他领域。 目前用的AI算法都是可以用数据公式表示出来,并且在很大程度上能够解决此公式。 哪些未被发现以及无法用可计算的数字方式来代表,仍然是无法触及的空白领域。 在人工智能发展的历程中,科学家们经常发明新的方法来利用计算机巧妙的方式解决问题,前几十年的人工智能侧重符号系统。 最流行的机器学习形式是监督学习,其中模型接受一组输入数据(例如湿度和温度)和预期结果(例如下雨概率)的训练。机器学习模型使用此信息来微调,形成从输入映射到输出的一组参数。即使遇到以前没有见过的数据输入时,训练有素的机器学习模型也可以非常准确地预测结果。并不需要去制定明确的规则。 机器学习涉及问题的表述时,它的解决方法是将其设置为三组数字。一组数字表示系统接收的输入,一组数字表示系统生成的输出,第三组数字表示机器学习模型。 机器学习另一个分支是深度学习,常常被比作人脑,其核心是深度神经网络。深度学习模型可以执行非常复杂的任务,如对图像进行分类或转录音频 深度学习的威力在很大程度上取决于架构和表现力。大多数深度学习模型需要标记的数据,而且没有一种通用的神经网络架构可以用以解决所有可能的问题。 在构建模型的过程中,机器学习研究员必须首先定义要解决的问题,然后“找”一个大型训练数据集,然后找出能够解决该问题的深度学习架构。 训练期间从输入到输出都需要数据工程师来指定输入和输出,调整输入参数,神经网络层数和类型、学习效率、优化功能、损失功能和其他不可学习的方面。 许多的神经网络的威力是源自其设计和数据叠加的结果,不是其自主的智能。只能说巧妙的网络结构和数据相结合才有好的模型。 机器学习的其他分支也遵循相同的规则。例如,无人监督的学习不需要标记示例。但是,它仍然需要一个明确的目标,如网络安全中的异常检测。 强化学习是机器学习的另一个流行分支,与人类和动物智力的某些方面非常相似。 强化学习环境通常非常复杂,智能体可以执行的可能操作的数量非常大。因此,强化学习代理需要人类智力的大量帮助来设计正确的奖励、简化问题和选择正确的架构。 总结:目前人工智能工作的方法,是在研究员已经想出了如何构建和简化问题的基础上开发的,以便现有的计算机和流程能够解决这些问题。要拥有真正的一般智能,计算机需要拥有能够定义和构建自己的问题的能力。 大型神经网络并不能解决一般智能的根本问题。人工智能的缺陷往往是其创造者的缺陷,而不是计算决策的内在属性。只是你我都深陷其中不能自拔。

0 人点赞