玩手机打电话识别监测系统

2023-04-29 11:56:34 浏览数 (1)

玩手机打电话识别监测系统通过YOLOv8网络模型技术,玩手机打电话识别监测系统对现场有人玩手机抽烟打电话时可以立即自动进行抓拍存档。玩手机打电话识别监测系统YOLOv8 算法的核心特性和改动可以归结为如下:提供了一个全新的 SOTA 模型,包括 P5 640 和 P6 1280 分辨率的目标检测网络和基于 YOLACT 的实例分割模型。和 YOLOv5 一样,基于缩放系数也提供了 N/S/M/L/X 尺度的不同大小模型,用于满足不同场景需求。Backbone:骨干网络和 Neck 部分可能参考了 YOLOv7 ELAN 设计思想,将 YOLOv5 的 C3 结构换成了梯度流更丰富的 C2f 结构,并对不同尺度模型调整了不同的通道数。

Backbone和Neck的具体变化

a) 第一个卷积层的 kernel 从 6x6 变成了 3x3

b) 所有的 C3 模块换成 C2f,结构如下所示,可以发现多了更多的跳层连接和额外的 Split 操作

c)去掉了 Neck 模块中的 2 个卷积连接层

d) Backbone 中 C2f 的 block 数从 3-6-9-3 改成了 3-6-6-3

e) 查看 N/S/M/L/X 等不同大小模型,可以发现 N/S 和 L/X 两组模型只是改了缩放系数,但是 S/M/L 等骨干网络的通道数设置不一样,没有遵循同一套缩放系数。如此设计的原因应该是同一套缩放系数下的通道设置不是最优设计,YOLOv7 网络设计时也没有遵循一套缩放系数作用于所有模型

现代目标检测器大部分都会在正负样本分配策略上面做文章,典型的如 YOLOX 的 simOTA、TOOD 的 TaskAlignedAssigner 和 RTMDet 的 DynamicSoftLabelAssigner,这类 Assigner 大都是动态分配策略,而 YOLOv5 采用的依然是静态分配策略。考虑到动态分配策略的优异性,YOLOv8 算法中则直接引用了 TOOD 的 TaskAlignedAssigner。TaskAlignedAssigner 的匹配策略简单总结为: 根据分类与回归的分数加权的分数选择正样本。

0 人点赞