代码语言:javascript复制
安装elasticsearch
1.部署单点es
1.1.创建网络
因为我们还需要部署kibana容器,因此需要让es和kibana容器互联。这里先创建一个网络:
docker network create es-net
1.2.加载镜像
这里我们采用elasticsearch的7.12.1版本的镜像,这个镜像体积非常大,接近1G。不建议大家自己pull。
课前资料提供了镜像的tar包:
image-20210510165308064
大家将其上传到虚拟机中,然后运行命令加载即可:
# 导入数据
docker load -i es.tar
同理还有kibana的tar包也需要这样做。
1.3.运行
运行docker命令,部署单点es:
docker run -d
--name es
-e "ES_JAVA_OPTS=-Xms512m -Xmx512m"
-e "discovery.type=single-node"
-v es-data:/usr/share/elasticsearch/data
-v es-plugins:/usr/share/elasticsearch/plugins
--privileged
--network es-net
-p 9200:9200
-p 9300:9300
elasticsearch:7.12.1
命令解释:
-e "cluster.name=es-docker-cluster":设置集群名称
-e "http.host=0.0.0.0":监听的地址,可以外网访问
-e "ES_JAVA_OPTS=-Xms512m -Xmx512m":内存大小
-e "discovery.type=single-node":非集群模式
-v es-data:/usr/share/elasticsearch/data:挂载逻辑卷,绑定es的数据目录
-v es-logs:/usr/share/elasticsearch/logs:挂载逻辑卷,绑定es的日志目录
-v es-plugins:/usr/share/elasticsearch/plugins:挂载逻辑卷,绑定es的插件目录
--privileged:授予逻辑卷访问权
--network es-net :加入一个名为es-net的网络中
-p 9200:9200:端口映射配置
在浏览器中输入:http://192.168.150.101:9200 即可看到elasticsearch的响应结果:
image-20210506101053676
2.部署kibana
kibana可以给我们提供一个elasticsearch的可视化界面,便于我们学习。
2.1.部署
运行docker命令,部署kibana
docker run -d
--name kibana
-e ELASTICSEARCH_HOSTS=http://es:9200
--network=es-net
-p 5601:5601
kibana:7.12.1
--network es-net :加入一个名为es-net的网络中,与elasticsearch在同一个网络中
-e ELASTICSEARCH_HOSTS=http://es:9200":设置elasticsearch的地址,因为kibana已经与elasticsearch在一个网络,因此可以用容器名直接访问elasticsearch
-p 5601:5601:端口映射配置
kibana启动一般比较慢,需要多等待一会,可以通过命令:
docker logs -f kibana
查看运行日志,当查看到下面的日志,说明成功:
image-20210109105135812
此时,在浏览器输入地址访问:http://192.168.150.101:5601,即可看到结果
2.2.DevTools
kibana中提供了一个DevTools界面:
image-20210506102630393
这个界面中可以编写DSL来操作elasticsearch。并且对DSL语句有自动补全功能。
3.安装IK分词器
3.1.在线安装ik插件(较慢)
# 进入容器内部
docker exec -it elasticsearch /bin/bash
# 在线下载并安装
./bin/elasticsearch-plugin install https://github.com/medcl/elasticsearch-analysis-ik/releases/download/v7.12.1/elasticsearch-analysis-ik-7.12.1.zip
#退出
exit
#重启容器
docker restart elasticsearch
3.2.离线安装ik插件(推荐)
1)查看数据卷目录
安装插件需要知道elasticsearch的plugins目录位置,而我们用了数据卷挂载,因此需要查看elasticsearch的数据卷目录,通过下面命令查看:
docker volume inspect es-plugins
显示结果:
[
{
"CreatedAt": "2022-05-06T10:06:34 08:00",
"Driver": "local",
"Labels": null,
"Mountpoint": "/var/lib/docker/volumes/es-plugins/_data",
"Name": "es-plugins",
"Options": null,
"Scope": "local"
}
]
说明plugins目录被挂载到了:/var/lib/docker/volumes/es-plugins/_data这个目录中。
2)解压缩分词器安装包
下面我们需要把课前资料中的ik分词器解压缩,重命名为ik
image-20210506110249144
3)上传到es容器的插件数据卷中
也就是/var/lib/docker/volumes/es-plugins/_data:
image-20210506110704293
4)重启容器
# 4、重启容器
docker restart es
# 查看es日志
docker logs -f es
5)测试:
IK分词器包含两种模式:
ik_smart:最少切分
ik_max_word:最细切分
GET /_analyze
{
"analyzer": "ik_max_word",
"text": "黑马程序员学习java太棒了"
}
结果:
{
"tokens" : [
{
"token" : "黑马",
"start_offset" : 0,
"end_offset" : 2,
"type" : "CN_WORD",
"position" : 0
},
{
"token" : "程序员",
"start_offset" : 2,
"end_offset" : 5,
"type" : "CN_WORD",
"position" : 1
},
{
"token" : "程序",
"start_offset" : 2,
"end_offset" : 4,
"type" : "CN_WORD",
"position" : 2
},
{
"token" : "员",
"start_offset" : 4,
"end_offset" : 5,
"type" : "CN_CHAR",
"position" : 3
},
{
"token" : "学习",
"start_offset" : 5,
"end_offset" : 7,
"type" : "CN_WORD",
"position" : 4
},
{
"token" : "java",
"start_offset" : 7,
"end_offset" : 11,
"type" : "ENGLISH",
"position" : 5
},
{
"token" : "太棒了",
"start_offset" : 11,
"end_offset" : 14,
"type" : "CN_WORD",
"position" : 6
},
{
"token" : "太棒",
"start_offset" : 11,
"end_offset" : 13,
"type" : "CN_WORD",
"position" : 7
},
{
"token" : "了",
"start_offset" : 13,
"end_offset" : 14,
"type" : "CN_CHAR",
"position" : 8
}
]
}
3.3 扩展词词典
随着互联网的发展,“造词运动”也越发的频繁。出现了很多新的词语,在原有的词汇列表中并不存在。比如:“奥力给”,“传智播客” 等。
所以我们的词汇也需要不断的更新,IK分词器提供了扩展词汇的功能。
1)打开IK分词器config目录:
image-20210506112225508
2)在IKAnalyzer.cfg.xml配置文件内容添加:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
<comment>IK Analyzer 扩展配置</comment>
<!--用户可以在这里配置自己的扩展字典 *** 添加扩展词典-->
<entry key="ext_dict">ext.dic</entry>
</properties>
3)新建一个 ext.dic,可以参考config目录下复制一个配置文件进行修改
传智播客
奥力给
4)重启elasticsearch
docker restart es
# 查看 日志
docker logs -f elasticsearch
image-20201115230900504
日志中已经成功加载ext.dic配置文件
5)测试效果:
GET /_analyze
{
"analyzer": "ik_max_word",
"text": "传智播客Java就业超过90%,奥力给!"
}
注意当前文件的编码必须是 UTF-8 格式,严禁使用Windows记事本编辑
3.4 停用词词典
在互联网项目中,在网络间传输的速度很快,所以很多语言是不允许在网络上传递的,如:关于宗教、政治等敏感词语,那么我们在搜索时也应该忽略当前词汇。
IK分词器也提供了强大的停用词功能,让我们在索引时就直接忽略当前的停用词汇表中的内容。
1)IKAnalyzer.cfg.xml配置文件内容添加:
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
<comment>IK Analyzer 扩展配置</comment>
<!--用户可以在这里配置自己的扩展字典-->
<entry key="ext_dict">ext.dic</entry>
<!--用户可以在这里配置自己的扩展停止词字典 *** 添加停用词词典-->
<entry key="ext_stopwords">stopword.dic</entry>
</properties>
3)在 stopword.dic 添加停用词
习大大
4)重启elasticsearch
# 重启服务
docker restart elasticsearch
docker restart kibana
# 查看 日志
docker logs -f elasticsearch
日志中已经成功加载stopword.dic配置文件
5)测试效果:
GET /_analyze
{
"analyzer": "ik_max_word",
"text": "传智播客Java就业率超过95%,习大大都点赞,奥力给!"
}
注意当前文件的编码必须是 UTF-8 格式,严禁使用Windows记事本编辑
4.部署es集群
部署es集群可以直接使用docker-compose来完成,不过要求你的Linux虚拟机至少有4G的内存空间
首先编写一个docker-compose文件,内容如下:
version: '2.2'
services:
es01:
image: docker.elastic.co/elasticsearch/elasticsearch:7.12.1
container_name: es01
environment:
- node.name=es01
- cluster.name=es-docker-cluster
- discovery.seed_hosts=es02,es03
- cluster.initial_master_nodes=es01,es02,es03
- bootstrap.memory_lock=true
- "ES_JAVA_OPTS=-Xms512m -Xmx512m"
ulimits:
memlock:
soft: -1
hard: -1
volumes:
- data01:/usr/share/elasticsearch/data
ports:
- 9200:9200
networks:
- elastic
es02:
image: docker.elastic.co/elasticsearch/elasticsearch:7.12.1
container_name: es02
environment:
- node.name=es02
- cluster.name=es-docker-cluster
- discovery.seed_hosts=es01,es03
- cluster.initial_master_nodes=es01,es02,es03
- bootstrap.memory_lock=true
- "ES_JAVA_OPTS=-Xms512m -Xmx512m"
ulimits:
memlock:
soft: -1
hard: -1
volumes:
- data02:/usr/share/elasticsearch/data
networks:
- elastic
es03:
image: docker.elastic.co/elasticsearch/elasticsearch:7.12.1
container_name: es03
environment:
- node.name=es03
- cluster.name=es-docker-cluster
- discovery.seed_hosts=es01,es02
- cluster.initial_master_nodes=es01,es02,es03
- bootstrap.memory_lock=true
- "ES_JAVA_OPTS=-Xms512m -Xmx512m"
ulimits:
memlock:
soft: -1
hard: -1
volumes:
- data03:/usr/share/elasticsearch/data
networks:
- elastic
volumes:
data01:
driver: local
data02:
driver: local
data03:
driver: local
networks:
elastic:
driver: bridge
Run docker-compose to bring up the cluster:
docker-compose up
mapping常见属性有哪些?
type: 数据类型 index:是否索引 analyzer:分词器 properties:子字段
type 常见的有哪些?
字符串:text,keyword 数字:long integer short byte double float 布尔:boolean 对象:object
代码语言:javascript复制格式演示
GET _search
{
"query": {
"match_all": {}
}
}
#测试分词器
POST /_analyze
{
"text": "传智教育的课程可以白嫖,奥里给",
"analyzer": "ik_max_word"
}
# 创建索引库
PUT /heima
{
"mappings": {
"properties": {
"info":{
"type": "text",
"analyzer": "ik_smart"
},
"email":{
"type": "keyword",
"index": false
},
"name":{
"type": "object",
"properties": {
"firstName" : {
"type" : "keyword"
},
"lasttName" : {
"type" : "keyword"
}
}
}
}
}
}
#查询
GET /heima
#查询
GET /hotel/_search
#修改索引库,添加新字段
PUT /heima/_mapping
{
"properties":{
"age":{
"type":"integer"
}
}
}
#删除
DELETE /hotel
#插入文档
POST /heima/_doc/1
{
"info":"黑马",
"email":"4644@qq.com",
"name":{
"firstName":"云",
"lastName":"赵"
}
}
#查询文档
GET /heima/_doc/1
#删除文档
DELETE /heima/_doc/1
#修改文档(覆盖)
PUT /heima/_doc/1
{
"info":"黑马",
"email":"1320123744@qq.com",
"name":{
"firstName":"云",
"lastName":"赵"
}
}
#修改
POST /heima/_update/1
{
"doc": {
"email":"zy@qq。com"
}
}
#酒店的mapper
PUT /hotel
{
"mappings": {
"properties": {
"id":{
"type": "keyword"
},
"name":{
"type": "text",
"analyzer": "ik_max_word",
"copy_to": "all"
},
"address":{
"type": "keyword",
"index": false
},
"price":{
"type": "integer"
},
"score":{
"type": "integer"
},
"brand":{
"type": "keyword",
"copy_to": "all"
},
"city":{
"type": "keyword"
},
"starName":{
"type": "keyword"
},
"business":{
"type": "keyword",
"copy_to": "all"
},
"location":{
"type": "geo_point"
},
"pic":{
"type": "keyword",
"index": false
},
"all":{
"type": "text",
"analyzer": "ik_max_word"
}
}
}
}
GET /hotel/_doc/61083
#match查询
GET /hotel/_search
{
"query": {
"match": {
"all": "如家外滩"
}
}
}
#multi_match
GET /hotel/_search
{
"query": {
"multi_match": {
"query": "外滩如家",
"fields": ["brand","name","business"]
}
}
}
# term 准确查询
GET /hotel/_search
{
"query": {
"term": {
"city": {
"value": "上海"
}
}
}
}
# range 范围查询
GET /hotel/_search
{
"query": {
"range": {
"price": {
"gte": 1000,
"lte": 3000
}
}
}
}
# distance查询
GET /hotel/_search
{
"query": {
"geo_distance":{
"distance":"5km",
"location":"31.21,121.5"
}
}
}
# funtion scoure 查询
GET /hotel/_search
{
"query": {
"function_score": {
"query": {
"match": {
"all": "外滩"
}},
"functions": [
{
"filter": {
"term": {
"brand": "如家"
}
},
"weight": 10
}
],
"boost_mode": "sum"
}
}
}
#复合查询
GET /hotel/_search
{
"query": {
"bool": {
"must": [
{
"match": {
"name": "如家"
}
}
],
"must_not": [
{
"range": {
"price": {
"gt": 400
}
}
}
],
"filter": [
{
"geo_distance": {
"distance": "10km",
"location": {
"lat": 31.21,
"lon": 121.5
}
}
}
]
}
}
}
#排序
GET /hotel/_search
{
"query": {
"match_all": {}
},
"sort": [
{
"score": "desc"
},
{
"price": "asc"
}
]
}
#高亮
GET /hotel/_search
{
"query": {
"match": {
"all": "如家"
}
},
"highlight": {
"fields": {
"name": {
"require_field_match": "false"
}
}
}
}
Java实现es增删改查和批量导入
代码语言:javascript复制@SpringBootTest
public class HotelIndexTest {
private RestHighLevelClient client;
@Autowired
public IHotelService hotelService;
@Test
void testInit(){
System.out.println(client);
}
//创建索引库
@Test
void createHotelIndex() throws IOException {
//1.创建request对象
CreateIndexRequest request = new CreateIndexRequest("hotel");
//2.准备请求的参数;dsl语句
request.source(
"{n"
" "mappings": {n"
" "properties": {n"
" "all":{n"
" "type": "text",n"
" "analyzer": "ik_max_word"n"
" },n"
" "id":{n"
" "type": "keyword"n"
" },n"
" "name":{n"
" "type": "text",n"
" "analyzer": "ik_max_word",n"
" "copy_to": "all"n"
" },n"
" "address":{n"
" "type": "keyword",n"
" "index": falsen"
" },n"
" "price":{n"
" "type": "integer"n"
" },n"
" "score":{n"
" "type": "integer"n"
" },n"
" "brand":{n"
" "type": "keyword",n"
" "copy_to": "all"n"
" },n"
" "city":{n"
" "type": "keyword"n"
" },n"
" "business":{n"
" "type": "keyword",n"
" "copy_to": "all"n"
" },n"
" "location":{n"
" "type": "geo_point"n"
" },n"
" "pic":{n"
" "type": "keyword",n"
" "index": falsen"
" }n"
" }n"
" }n"
"}", XContentType.JSON);
//3.发送请求
client.indices().create(request, RequestOptions.DEFAULT);
}
//删除索引库
@Test
void delecthotelindex() throws IOException {
//创建索引库
DeleteIndexRequest request = new DeleteIndexRequest("hotel");
//发送请求
client.indices().delete(request,RequestOptions.DEFAULT);
}
//新增文档
@Test
void testdocument() throws IOException {
Hotel hotel = hotelService.getById(61083l);
HotelDoc hotelDoc = new HotelDoc(hotel);
//创建请求
IndexRequest request = new IndexRequest("hotel").id(hotelDoc.getId().toString());
//写入json
System.out.println(JSON.toJSON(hotelDoc));
request.source(JSON.toJSON(hotelDoc), XContentType.JSON);
//发送
client.index(request,RequestOptions.DEFAULT);
}
//查询文档
@Test
void selectdocument() throws IOException {
//创建请求
GetRequest request = new GetRequest("hotel").id("61083");
//删除
GetResponse response = client.get(request, RequestOptions.DEFAULT);
String json = response.getSourceAsString();
System.out.println(json);
HotelDoc hotelDoc = JSON.parseObject(json,HotelDoc.class);
System.out.println(hotelDoc);
}
//删除文档
@Test
void deletedocument() throws IOException {
//创建请求
DeleteRequest request = new DeleteRequest("hotel").id("61803");
//删除
client.delete(request,RequestOptions.DEFAULT);
}
//批量写入数据
@Test
void testbulkrequest() throws IOException {
List<Hotel> hotels = hotelService.listhotel();
//创建request
BulkRequest request = new BulkRequest();
//准备参数,添加多个request
for (Hotel hotel:hotels){
HotelDoc hotelDoc = new HotelDoc(hotel);
request.add(new IndexRequest("hotel")
.id(hotelDoc.getId().toString())
.source(JSON.toJSONString(hotelDoc),XContentType.JSON)
);
}
//发送请求
client.bulk(request,RequestOptions.DEFAULT);
}
@Test
void existe() throws IOException {
//创建请求
GetIndexRequest request = new GetIndexRequest("hotel");
//判断
boolean result = client.indices().exists(request,RequestOptions.DEFAULT);
System.out.println(result);
}
//初始化客户端
@BeforeEach
void setUp(){
this.client = new RestHighLevelClient(RestClient.builder(
HttpHost.create("http://192.168.37.130:9200")
));
}
//关闭连接
@AfterEach
void tearDown(){
try {
this.client.close();
} catch (IOException e) {
e.printStackTrace();
}
}
}