https://mp.weixin.qq.com/mp/appmsgalbum?__biz=Mzg5MDg4MDU4MQ==&action=getalbum&album_id=2902554394763001861&scene=173&from_msgid=2247485423&from_itemidx=1&count=3&nolastread=1#wechat_redirect
Poisson分布
是一种离散概率分布;泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生次数。 泊松分布适合于描述单位时间内随机事件发生的次数。
RNA-seq的count值服从Poisson分布,生活中还有其他事情按照固定频率发生、某医院平均每小时出生3个婴儿、某公司平均每10分钟接到1个电话、某网站平均每分钟有2次访问等
泊松分布的期望和方差均为$lambda$
代码语言:javascript复制$$
P(X=k)=frac{lambda^{k}}{k !} e^{-lambda}, k=0,1, cdots
$$
指数分布
是一种连续性概率分布;描述事件与事件之间间隔时间的分布。
指数分布的期望为$frac{1}{lambda}$和方差为$frac{1}{lambda^2}$
代码语言:javascript复制$$
f(x)=left{begin{array}{ll}lambda e^{-lambda x} & x>0 0 & x leq 0end{array}right.
$$
例题
超市收银台平均每分钟有2 名 顾客结完帐通过。
- 分别以泊松分布和指数分布计算1分钟没有顾客通过收银台的概率.
(1)泊松分布
代码语言:javascript复制$$
E(x)=2=lambda
$$
$$
P(x=0)=frac{lambda^{x}}{x !} e^{-lambda}=frac{2^{0}}{0 !} e^{-2}=frac{1}{e^{2}}
$$
(2)指数分布
代码语言:javascript复制$$
E(t)=frac{1}{2}=frac{1}{lambda};lambda=2
$$
$$
P(t>1)=int{1}^{ infty} lambda e^{-lambda t} d t=-left.e^{-2 t}right|{1} ^{ infty}=frac{1}{e^{2}}
$$
- 分别以泊松分布和指数分布计算2分钟没有顾客通过收银台的概率.
只有单位时间的时候泊松分布和指数分布的$lambda$才相等,所以泊松分布和指数分布是描述同一事件的不同角度。
(1)泊松分布
代码语言:javascript复制$$
E(x)=4=lambda
$$
$$
P(x=0)=frac{lambda^{x}}{x !} e^{-lambda}=frac{4^{0}}{0 !} e^{-4}=frac{1}{e^{4}}
$$
(2)指数分布
代码语言:javascript复制$$
E(t)=frac{1}{2}=frac{1}{lambda};lambda=2
$$
$$
P(t>2)=int{2}^{ infty} lambda e^{-lambda t} d t=-left.e^{-2 t}right|{2} ^{ infty}=frac{1}{e^{4}}
$$
Reference
代码语言:text复制https://baike.baidu.com/item/泊松分布/1442110
https://www.bilibili.com/video/BV1CA411P7bL
https://www.ruanyifeng.com/blog/2015/06/poisson-distribution.html