和chatgpt一样的大模型LLaMA可以运行在pc上?

2023-05-09 09:54:30 浏览数 (3)

未来已来,大模型依据压缩模型的方式,可以在普通的PC上运行.

LLaMA

Facebook的LLaMA 模型和Georgi Gerganov 的llama.cpp的结合。 LLaMA,这是一组包含 7B 到 65B 参数的基础语言模型。我们在数万亿个令牌上训练我们的模型,并表明可以仅使用公开可用的数据集来训练最先进的模型,而无需诉诸专有和不可访问的数据集。特别是,LLaMA-13B 在大多数基准测试中都优于 GPT-3 (175B),而 LLaMA-65B 可与最佳模型 Chinchilla-70B 和 PaLM-540B 竞争。我们将所有模型发布给研究社区。

论文

4位量化是一种减小模型大小的技术,因此它们可以在功能较弱的硬件上运行。它还减少了磁盘上的模型大小——7B 模型减少到 4GB,13B 模型减少到不到 8GB。 它完全有效!今晚我用它在我的笔记本电脑上运行 7B LLaMA 模型,然后今天早上升级到 13B 模型——Facebook 声称可以与 GPT-3 竞争的模型。

论文地址:Large language models are having their Stable Diffusion moment right now.

步骤

1.下载模型: 1) 种子下载方式 2) 签署的方式

搭建步骤

代码语言:javascript复制
$ git clone https://github.com/ggerganov/llama.cpp
$ cd llama.cpp
$ docker pull ubuntu
$ sudo docker run -it -d -v ~/Desktop:/workspace --name llama imageid
$ sudo docker exec -it llama bash
$ apt install build-essential zlib1g-dev libncurses5-dev libgdbm-dev libnss3-dev libssl-dev libreadline-dev libffi-dev libsqlite3-dev wget libbz2-dev cmake python3.10 vim gcc 
$ apt install cmake python3.10 vim gcc python3-pip

# 下载模型 7B model/13B model/30B model/ 65B model bittorrennt(种子)
aria2c --select-file 21-23,25,26 'magnet:?xt=urn:btih:b8287ebfa04f879b048d4d4404108cf3e8014352&dn=LLaMA'

下载到models路径下
$ ls ./models
13B
30B
65B
7B
llama.sh
tokenizer.model
tokenizer_checklist.chk

$ pip3 install torch numpy sentencepiece -i https://pypi.tuna.tsinghua.edu.cn/simple

$ python convert-pth-to-ggml.py models/7B/ 1
$ make
$ ./quantize ./models/7B/ggml-model-f16.bin ./models/7B/ggml-model-q4_0.bin 2

$ ./quantize ./models/13B/ggml-model-f16.bin ./models/13B/ggml-model-q4_0.bin 2
# 这将生成型号/7B/ggml-model-q4_0.bin-3.9GB文件。这是我们将用于运行模型的文件。

运行7B模型

代码语言:javascript复制
# 创建了ggml-model-q4_0.bin文件后,我们现在可以运行该模型了。
$ ./main -m ./models/7B/ggml-model-q4_0.bin 
  -t 8 
  -n 128 
  -p 'The first man on the moon was '
# ./main --help shows the options. -m is the model. -t is the number of threads to use. -n is the number of tokens to generate. -p is the prompt.

$ usage: ./main [options]

options:
  -h, --help            show this help message and exit
  -s SEED, --seed SEED  RNG seed (default: -1)
  -t N, --threads N     number of threads to use during computation (default: 4)
  -p PROMPT, --prompt PROMPT
                        prompt to start generation with (default: random)
  -n N, --n_predict N   number of tokens to predict (default: 128)
  --top_k N             top-k sampling (default: 40)
  --top_p N             top-p sampling (default: 0.9)
  --temp N              temperature (default: 0.8)
  -b N, --batch_size N  batch size for prompt processing (default: 8)
  -m FNAME, --model FNAME
                        model path (default: models/llama-7B/ggml-model.bin)

我的第一个提示是第一个登上月球的人是-我得到了这个:

-p 'def open_and_return_content(filename):'

代码语言:javascript复制
def open_and_return_content(filename):
    """
    Opens file (returning the content) and performs basic sanity checks
    """
    if os.path.isfile(filename):
        with open(filename) as f:
            content = f.read()
            return content
    else:
        print('WARNING: file "{}" does not exist'.format(filename), file=sys.stderr)
        return ''

def get_file_info(filename, fullpath):
    """
    Get file information (i.e., permission, owner, group, size)
    """

运行13B模型

参考建议运行13B没那么简单. 在运行任何转换之前,13B文件夹包含以下文件:

代码语言:javascript复制
154B checklist.chk
12G consolidated.00.pth
12G consolidated.01.pth
101B params.json

转化脚本

代码语言:javascript复制
$ convert-pth-to-ggml.py models/13B/ 1

12G ggml-model-f16.bin
12G ggml-model-f16.bin.1

$ ./quantize ./models/13B/ggml-model-f16.bin   ./models/13B/ggml-model-q4_0.bin 2
$ ./quantize ./models/13B/ggml-model-f16.bin.1 ./models/13B/ggml-model-q4_0.bin.1 2

Then to run a prompt:

代码语言:javascript复制
./main 
  -m ./models/13B/ggml-model-q4_0.bin 
  -t 8 
  -n 128 
  -p 'Some good pun names for a coffee shop run by beavers:-'

结果如下: Some good pun names for a coffee shop run by beavers:

  • Beaver & Cat Coffee
  • Beaver & Friends Coffee
  • Beaver & Tail Coffee
  • Beavers Beaver Coffee
  • Beavers Are Friends Coffee
  • Beavers Are Friends But They Are Not Friends With Cat Coffee
  • Bear Coffee
  • Beaver Beaver
  • Beaver Beaver's Beaver
  • Beaver Beaver Beaver
  • Beaver Beaver Beaver
  • Beaver Beaver Beaver Beaver
  • Beaver Beaver Beaver Beaver
  • Be

部署参考

  • Georgi 是保加利亚索非亚的一名开源开发人员(根据他的 GitHub 个人资料)。他之前发布了whisper.cpp,这是 OpenAI 的 Whisper 自动语音识别模型到 C 的端口。该项目使 Whisper 适用于大量新用例。其他模型实例
  • 教程:Large language models are having their Stable Diffusion moment
  • LLaMA FAQ
  • llama英文教程1
  • llama英文教程2

0 人点赞