工服智能监测预警系统

2023-05-10 01:02:14 浏览数 (1)

工服智能监测预警系统通过yolov8网络模型算法,工服智能监测预警系统对现场人员未按要求穿戴工服工装则输出报警信息,通知后台人员及时处理。工服智能监测预警系统Yolo算法采用一个单独的CNN模型实现end-to-end的目标检测,核心思想就是利用整张图作为网络的输入,直接在输出层回归 bounding box(边界框) 的位置及其所属的类别。YOLO系列算法是一类典型的one-stage目标检测算法,其利用anchor box将分类与目标定位的回归问题结合起来,从而做到了高效、灵活和泛化性能好,所以在工业界也十分受欢迎。

YOLOv8 算法的核心特性和改动可以归结为如下:提供了一个全新的 SOTA 模型,包括 P5 640 和 P6 1280 分辨率的目标检测网络和基于 YOLACT 的实例分割模型。和 YOLOv5 一样,基于缩放系数也提供了 N/S/M/L/X 尺度的不同大小模型,用于满足不同场景需求。Backbone:骨干网络和 Neck 部分可能参考了 YOLOv7 ELAN 设计思想,将 YOLOv5 的 C3 结构换成了梯度流更丰富的 C2f 结构,并对不同尺度模型调整了不同的通道数。Head: Head部分较yolov5而言有两大改进:1)换成了目前主流的解耦头结构(Decoupled-Head),将分类和检测头分离 2)同时也从 Anchor-Based 换成了 Anchor-Free。Loss :1) YOLOv8抛弃了以往的IOU匹配或者单边比例的分配方式,而是使用了Task-Aligned Assigner正负样本匹配方式。2)并引入了 Distribution Focal Loss(DFL)

Train:训练的数据增强部分引入了 YOLOX 中的最后 10 epoch 关闭 Mosiac 增强的操作,可以有效地提升精度

Backbone和Neck的具体变化 a) 第一个卷积层的 kernel 从 6x6 变成了 3x3 b) 所有的 C3 模块换成 C2f,结构如下所示,可以发现多了更多的跳层连接和额外的 Split 操作

c)去掉了 Neck 模块中的 2 个卷积连接层 d) Backbone 中 C2f 的 block 数从 3-6-9-3 改成了 3-6-6-3 e) 查看 N/S/M/L/X 等不同大小模型,可以发现 N/S 和 L/X 两组模型只是改了缩放系数,但是 S/M/L 等骨干网络的通道数设置不一样,没有遵循同一套缩放系数。如此设计的原因应该是同一套缩放系数下的通道设置不是最优设计,YOLOv7 网络设计时也没有遵循一套缩放系数作用于所有模型

0 人点赞