2023-05-21:给定一个字符串 s 和一个整数 k 。你可以从 s 的前 k 个字母中选择一个, 并把它加到字符串的末尾。 返回 在应用上述步骤的任意数量

2023-05-21 21:57:32 浏览数 (1)

2023-05-21:给定一个字符串 s 和一个整数 k 。你可以从 s 的前 k 个字母中选择一个,

并把它加到字符串的末尾。

返回 在应用上述步骤的任意数量的移动后,字典上最小的字符串。

输入:s = "baaca", k = 3。

输出:"aaabc"。

答案2023-05-21:

大体过程如下:

1.当 k 大于 1 时,直接将字符串 s 中的字符按照字典序排序,得到排序后的字符串 s',返回 s'。

2.当 k 等于 1 时,需要使用 DC3 算法对字符串 s 进行处理,得到其所有后缀排名,并找到排名最小的后缀起始位置 minRankIndex。

3.将字符串 s 的前 minRankIndex 个字符移动到字符串末尾,得到新的字符串 s',返回 s'。

值得注意的是,DC3 算法是一种用于求解后缀数组的算法,可以在 O(n) 的复杂度内计算一个字符串的后缀数组。在本题中,我们需要用到 DC3 算法来寻找字符串 s 所有后缀的排名,以便找到排名最小的后缀起始位置。

对于给定字符串 s 和整数 k,orderlyQueue 函数的时间复杂度和空间复杂度分别如下:

1.当 k > 1 时,时间复杂度为 O(nlogn),其中 n 是字符串 s 的长度。主要耗时在排序操作中,使用快速排序等算法可以达到 O(nlogn) 的复杂度。空间复杂度也为 O(nlogn),主要用于存储字符串数组的副本和排序结果。

2.当 k = 1 时,时间复杂度为 O(n),其中 n 是字符串 s 的长度。时间复杂度主要来自 DC3 算法的实现,该算法可以在 O(n) 的时间复杂度内计算一个字符串的后缀数组。空间复杂度为 O(n),主要用于存储后缀数组、排名和其他中间变量。

综上所述,orderlyQueue 函数的时间复杂度为 O(nlogn) 或 O(n),空间复杂度为 O(nlogn) 或 O(n),具体取决于 k 的值。

go完整代码如下:

代码语言:go复制
package main

import (
	"fmt"
	"sort"
	"strings"
)

func orderlyQueue(s string, k int) string {
	if k > 1 {
		sArr := strings.Split(s, "")
		sort.Strings(sArr)
		return strings.Join(sArr, "")
	} else {
		s2 := s   s
		n := len(s2)
		arr := make([]int, n)
		for i := 0; i < n; i   {
			arr[i] = int(s2[i] - 'a'   1)
		}
		dc3 := NewDC3(arr, 26)
		n = n >> 1
		minRankIndex := 0
		for i := 1; i < n; i   {
			if dc3.rank[i] < dc3.rank[minRankIndex] {
				minRankIndex = i
			}
		}
		return s[minRankIndex:]   s[0:minRankIndex]
	}
}

// DC3算法实现
// 根据原算法Java代码修改
type DC3 struct {
	sa   []int
	rank []int
}

// NewDC3 构造函数
func NewDC3(nums []int, max int) *DC3 {
	dc3 := &DC3{}
	dc3.sa = dc3.sa0(nums, max)
	dc3.rank = dc3.rank0()
	return dc3
}

func (dc3 *DC3) sa0(nums []int, K int) []int {
	n := len(nums)
	arr := make([]int, n 3)
	copy(arr, nums)
	return dc3.skew(arr, n, K)
}

func (dc3 *DC3) skew(nums []int, n int, K int) []int {
	n0 := (n   2) / 3
	n1 := (n   1) / 3
	n2 := n / 3
	n02 := n0   n2
	s12 := make([]int, n02 3)
	sa12 := make([]int, n02 3)
	for i, j := 0, 0; i < n (n0-n1); i   {
		if i%3 != 0 {
			s12[j] = i
			j  
		}
	}
	dc3.radixPass(nums, s12, sa12, 2, n02, K)
	dc3.radixPass(nums, sa12, s12, 1, n02, K)
	dc3.radixPass(nums, s12, sa12, 0, n02, K)

	name := 0
	c0 := -1
	c1 := -1
	c2 := -1
	for i := 0; i < n02; i   {
		if nums[sa12[i]] != c0 || nums[sa12[i] 1] != c1 || nums[sa12[i] 2] != c2 {
			name  
			c0 = nums[sa12[i]]
			c1 = nums[sa12[i] 1]
			c2 = nums[sa12[i] 2]
		}
		if sa12[i]%3 == 1 {
			s12[sa12[i]/3] = name
		} else {
			s12[sa12[i]/3 n0] = name
		}
	}
	if name < n02 {
		sa12 = dc3.skew(s12, n02, name)
		for i := 0; i < n02; i   {
			s12[sa12[i]] = i   1
		}
	} else {
		for i := 0; i < n02; i   {
			sa12[s12[i]-1] = i
		}
	}

	s0 := make([]int, n0)
	sa0 := make([]int, n0)
	for i, j := 0, 0; i < n02; i   {
		if sa12[i] < n0 {
			s0[j] = 3 * sa12[i]
			j  
		}
	}
	dc3.radixPass(nums, s0, sa0, 0, n0, K)

	sa := make([]int, n)
	for p, t, k := 0, n0-n1, 0; k < n; k   {
		i := sa12[t]
		if i < n0 {
			i = i*3   1
		} else {
			i = (i-n0)*3   2
		}
		j := sa0[p]
		if i < n-1 && j < n-1 {
			if nums[i] < nums[j] || (nums[i] == nums[j] && nums[i 1] < nums[j 1]) ||
				(nums[i] == nums[j] && nums[i 1] == nums[j 1] && nums[i 2] <= nums[j 2]) {
				sa[k] = i
				t  
				if t == n02 {
					k  
					for ; p < n0; p   {
						sa[k] = sa0[p]
						k  
					}
				}
			} else {
				sa[k] = j
				p  
				if p == n0 {
					k  
					for ; t < n02; t   {
						i := sa12[t]
						if i < n0 {
							sa[k] = i*3   1
						} else {
							sa[k] = (i-n0)*3   2
						}
						k  
					}
				}
			}
		} else {
			if nums[i] < nums[j] || (nums[i] == nums[j] && nums[i 1] <= nums[j 1]) {
				sa[k] = i
				t  
				if t == n02 {
					k  
					for ; p < n0; p   {
						sa[k] = sa0[p]
						k  
					}
				}
			} else {
				sa[k] = j
				p  
				if p == n0 {
					k  
					for ; t < n02; t   {
						i := sa12[t]
						if i < n0 {
							sa[k] = i*3   1
						} else {
							sa[k] = (i-n0)*3   2
						}
						k  
					}
				}
			}
		}
	}
	return sa
}

func (dc3 *DC3) radixPass(nums []int, input []int, output []int, offset int, n int, k int) {
	cnt := make([]int, k 1)
	for i := 0; i < n; i   {
		cnt[nums[input[i] offset]]  
	}
	for i, sum := 0, 0; i < len(cnt); i   {
		t := cnt[i]
		cnt[i] = sum
		sum  = t
	}
	for i := 0; i < n; i   {
		output[cnt[nums[input[i] offset]]] = input[i]
		cnt[nums[input[i] offset]]  
	}
}

func (dc3 *DC3) rank0() []int {
	n := len(dc3.sa)
	ans := make([]int, n)
	for i := 0; i < n; i   {
		ans[dc3.sa[i]] = i
	}
	return ans
}

func main() {
	s := "baaca"
	k := 3
	result := orderlyQueue(s, k)
	fmt.Println(result)
}
在这里插入图片描述在这里插入图片描述

0 人点赞