算法复杂度的分析方法及其运用

2023-06-09 15:37:27 浏览数 (1)

算法复杂度是在《数据结构》这门课程的第一章里出现的,因为它稍微涉及到一些数学问题,所以很多同学感觉很难,加上这个概念也不是那么具体,更让许多人复习起来无从下手,下面我们就这个问题给各位考生进行分析。

首先了解一下几个概念。

一个是时间复杂度

一个是渐近时间复杂度

前者是某个算法的时间耗费,它是该算法所求解问题规模n的函数,而后者是指当问题规模趋向无穷大时,该算法时间复杂度的数量级。

当我们评价一个算法的时间性能时,主要标准就是算法的渐近时间复杂度,因此,在算法分析时,往往对两者不予区分,经常是将渐近时间复杂度T(n)=O(f(n))简称为时间复杂度,其中的f(n)一般是算法中频度最大的语句频度。

此外,算法中语句的频度不仅与问题规模有关,还与输入实例中各元素的取值相关。但是我们总是考虑在最坏的情况下的时 间复杂度。以保证算法的运行时 间不会比它更长。

常见的时 间复杂度,按数量级递增排列依次为:

  • 常数阶O(1)
  • 对数阶O(log2n)
  • 线性阶O(n)
  • 线性对数阶O(nlog2n)
  • 平方阶O(n^2)
  • 立方阶O(n^3)
  • k次方阶O(n^k)
  • 指数阶O(2^n)

下面我们通过例子加以说明,让大家碰到问题时知道如何去解决。

1、设三个函数f,g,h分别为 f(n)=100n^3 n^2 1000 , g(n)=25n^3 5000n^2 , h(n)=n^1.5 5000nlgn

请判断下列关系是否成立: (1) f(n)=O(g(n)) (2) g(n)=O(f(n)) (3) h(n)=O(n^1.5) (4) h(n)=O(nlgn)

这里我们复习一下渐近时 间复杂度的表示法T(n)=O(f(n)),这里的"O"是数学符号,它的严格定义是"若T(n)和f(n)是定义在正整数集合上的两个函数,则T(n)=O(f(n))表示存在正的常数C和n0 ,使得当n≥n0时都满足0≤T(n)≤C?f(n)。"用容易理解的话说就是这两个函数当整型自变量n趋向于无穷大时,两者的比值是一个不等于0的常数。这么一来,就好计算了吧。

◆ (1)成立。题中由于两个函数的最高次项都是n^3,因此当n→∞时,两个函数的比值是一个常数,所以这个关系式是成立的。 ◆ (2)成立。与上同理。 ◆ (3)成立。与上同理。 ◆ (4)不成立。由于当n→∞时n^1.5比nlgn递增的快,所以h(n)与nlgn的比值不是常数,故不成立。

2、设n为正整数,利用大"O"记号,将下列程序段的执行时 间表示为n的函数。 (1) i=1; k=0 while(i<n) { k=k 10*i;i ;} 解答:T(n)=n-1, T(n)=O(n), 这个函数是按线性阶递增的。

(2) x=n; // n>1 while (x>=(y 1)*(y 1)) y ; 解答:T(n)=n1/2 ,T(n)=O(n1/2), 最坏的情况是y=0,那么循环的次数是n1/2次,这是一个按平方根阶递增的函数。

(3) x=91; y=100; while(y>0) if(x>100) {x=x-10;y--;} else x ; 解答:T(n)=O(1), 这个程序看起来有点吓人,总共循环运行了1000次,但是我们看到n没有? 没。这段程序的运行是和n无关的,就算它再循环一万年,我们也不管他,只是一个常数阶的函数。

0 人点赞