提到自旋锁那就必须要说链表,在上一篇《驱动开发:内核中的链表与结构体》
文章中简单实用链表结构来存储进程信息列表,相信读者应该已经理解了内核链表的基本使用,本篇文章将讲解自旋锁的简单应用,自旋锁是为了解决内核链表读写时存在线程同步问题,解决多线程同步问题必须要用锁,通常使用自旋锁,自旋锁是内核中提供的一种高IRQL锁,用同步以及独占的方式访问某个资源。
首先以简单的链表为案例,链表主要分为单向链表与双向链表,单向链表的链表节点中只有一个链表指针,其指向后一个链表元素,而双向链表节点中有两个链表节点指针,其中Blink
指向前一个链表节点Flink
指向后一个节点,以双向链表为例。
#include <ntifs.h>
#include <ntstrsafe.h>
/*
// 链表节点指针
typedef struct _LIST_ENTRY
{
struct _LIST_ENTRY *Flink; // 当前节点的后一个节点
struct _LIST_ENTRY *Blink; // 当前节点的前一个结点
}LIST_ENTRY, *PLIST_ENTRY;
*/
typedef struct _MyStruct
{
ULONG x;
ULONG y;
LIST_ENTRY lpListEntry;
}MyStruct,*pMyStruct;
VOID UnDriver(PDRIVER_OBJECT driver)
{
DbgPrint("驱动卸载成功 n");
}
// By: LyShark
NTSTATUS DriverEntry(IN PDRIVER_OBJECT Driver, PUNICODE_STRING RegistryPath)
{
DbgPrint("By:LyShark n");
DbgPrint("Email:me@lyshark.com n");
// 初始化头节点
LIST_ENTRY ListHeader = { 0 };
InitializeListHead(&ListHeader);
// 定义链表元素
MyStruct testA = { 0 };
MyStruct testB = { 0 };
MyStruct testC = { 0 };
testA.x = 100;
testA.y = 200;
testB.x = 1000;
testB.y = 2000;
testC.x = 10000;
testC.y = 20000;
// 分别插入节点到头部和尾部
InsertHeadList(&ListHeader, &testA.lpListEntry);
InsertTailList(&ListHeader, &testB.lpListEntry);
InsertTailList(&ListHeader, &testC.lpListEntry);
// 节点不为空 则 移除一个节点
if (IsListEmpty(&ListHeader) == FALSE)
{
RemoveEntryList(&testA.lpListEntry);
}
// 输出链表数据
PLIST_ENTRY pListEntry = NULL;
pListEntry = ListHeader.Flink;
while (pListEntry != &ListHeader)
{
// 计算出成员距离结构体顶部内存距离
pMyStruct ptr = CONTAINING_RECORD(pListEntry, MyStruct, lpListEntry);
DbgPrint("节点元素X = %d 节点元素Y = %d n", ptr->x, ptr->y);
// 得到下一个元素地址
pListEntry = pListEntry->Flink;
}
Driver->DriverUnload = UnDriver;
return STATUS_SUCCESS;
}
链表输出效果如下:
如上所述,内核链表读写时存在线程同步问题,解决多线程同步问题必须要用锁,通常使用自旋锁,自旋锁是内核中提供的一种高IRQL锁,用同步以及独占的方式访问某个资源。
代码语言:javascript复制#include <ntifs.h>
#include <ntstrsafe.h>
/*
// 链表节点指针
typedef struct _LIST_ENTRY
{
struct _LIST_ENTRY *Flink; // 当前节点的后一个节点
struct _LIST_ENTRY *Blink; // 当前节点的前一个结点
}LIST_ENTRY, *PLIST_ENTRY;
*/
typedef struct _MyStruct
{
ULONG x;
ULONG y;
LIST_ENTRY lpListEntry;
}MyStruct, *pMyStruct;
// 定义全局链表和全局锁
LIST_ENTRY my_list_header;
KSPIN_LOCK my_list_lock;
// 初始化
void Init()
{
InitializeListHead(&my_list_header);
KeInitializeSpinLock(&my_list_lock);
}
// 函数内使用锁
void function_ins()
{
KIRQL Irql;
// 加锁
KeAcquireSpinLock(&my_list_lock, &Irql);
DbgPrint("锁内部执行 n");
// 释放锁
KeReleaseSpinLock(&my_list_lock, Irql);
}
VOID UnDriver(PDRIVER_OBJECT driver)
{
DbgPrint("驱动卸载成功 n");
}
// By: LyShark
NTSTATUS DriverEntry(IN PDRIVER_OBJECT Driver, PUNICODE_STRING RegistryPath)
{
DbgPrint("By:LyShark n");
DbgPrint("Email:me@lyshark.com n");
// 初始化链表
Init();
// 分配链表空间
pMyStruct testA = (pMyStruct)ExAllocatePool(NonPagedPoolExecute, sizeof(pMyStruct));
pMyStruct testB = (pMyStruct)ExAllocatePool(NonPagedPoolExecute, sizeof(pMyStruct));
// 赋值
testA->x = 100;
testA->y = 200;
testB->x = 1000;
testB->y = 2000;
// 向全局链表中插入数据
if (NULL != testA && NULL != testB)
{
ExInterlockedInsertHeadList(&my_list_header, (PLIST_ENTRY)&testA->lpListEntry, &my_list_lock);
ExInterlockedInsertTailList(&my_list_header, (PLIST_ENTRY)&testB->lpListEntry, &my_list_lock);
}
function_ins();
// 移除节点A并放入到remove_entry中
PLIST_ENTRY remove_entry = ExInterlockedRemoveHeadList(&testA->lpListEntry, &my_list_lock);
// 输出链表数据
while (remove_entry != &my_list_header)
{
// 计算出成员距离结构体顶部内存距离
pMyStruct ptr = CONTAINING_RECORD(remove_entry, MyStruct, lpListEntry);
DbgPrint("节点元素X = %d 节点元素Y = %d n", ptr->x, ptr->y);
// 得到下一个元素地址
remove_entry = remove_entry->Flink;
}
Driver->DriverUnload = UnDriver;
return STATUS_SUCCESS;
}
加锁后执行效果如下: