【面试高频题】难度 3/5,状态压缩 DP 及其优化

2022-12-30 17:28:09 浏览数 (1)

题目描述

这是 LeetCode 上的 「526. 优美的排列」 ,难度为 「中等」

Tag : 「位运算」、「状压 DP」、「动态规划」

示例1:

代码语言:javascript复制
输入: 2

输出: 2

解释: 
第 1 个优美的排列是 [1, 2]:
  第 1 个位置(i=1)上的数字是1,1能被 i(i=1)整除
  第 2 个位置(i=2)上的数字是2,2能被 i(i=2)整除

第 2 个优美的排列是 [2, 1]:
  第 1 个位置(i=1)上的数字是2,2能被 i(i=1)整除
  第 2 个位置(i=2)上的数字是1,i(i=2)能被 1 整除

说明:

  • N是一个正整数,并且不会超过 15。

状态压缩 DP

利用数据范围不超过 15,我们可以使用「状态压缩 DP」进行求解。

使用一个二进制数表示当前哪些数已被选,哪些数未被选,目的是为了可以使用位运算进行加速。

我们可以通过一个具体的样例,来感受下「状态压缩」是什么意思:

例如 (000...0101)_2 代表值为 1和值为 3 的数字已经被使用了,而值为 2的节点尚未被使用。

然后再来看看使用「状态压缩」的话,一些基本的操作该如何进行:

假设变量 state存放了「当前数的使用情况」,当我们需要检查值为 k的数是否被使用时,可以使用位运算 a = (state >> k) & 1,来获取 state 中第 k 位的二进制表示,如果 a 为 1代表值为 k 的数字已被使用,如果为 0则未被访问。

代码:

代码语言:javascript复制
class Solution {
    public int countArrangement(int n) {
        int mask = 1 << n;
        int[][] f = new int[n   1][mask];
        f[0][0] = 1;
        for (int i = 1; i <= n; i  ) {
            // 枚举所有的状态
            for (int state = 0; state < mask; state  ) {
                // 枚举位置 i(最后一位)选的数值是 k
                for (int k = 1; k <= n; k  ) {
                    // 首先 k 在 state 中必须是 1
                    if (((state >> (k - 1)) & 1) == 0) continue;
                    // 数值 k 和位置 i 之间满足任一整除关系
                    if (k % i != 0 && i % k != 0) continue;
                    // state & (~(1 << (k - 1))) 代表将 state 中数值 k 的位置置零
                    f[i][state]  = f[i - 1][state & (~(1 << (k - 1)))];
                }
            }
        }
        return f[n][mask - 1];
    }
}

状态压缩 DP(优化)

代码:

代码语言:javascript复制
class Solution {
    int getCnt(int x) {
        int ans = 0;
        while (x != 0) {
            x -= (x & -x); // lowbit
            ans  ;
        }
        return ans;
    }
    public int countArrangement(int n) {
        int mask = 1 << n;
        int[] f = new int[mask];
        f[0] = 1;
        // 枚举所有的状态
        for (int state = 1; state < mask; state  ) {
            // 计算 state 有多少个 1(也就是当前排序长度为多少)
            int cnt = getCnt(state);
            // 枚举最后一位数值为多少
            for (int i = 0; i < n; i  ) {
                // 数值在 state 中必须是 1
                if (((state >> i) & 1) == 0) continue;
                // 数值(i   1)和位置(cnt)之间满足任一整除关系
                if ((i   1) % cnt != 0 && cnt % (i   1) != 0) continue;
                // state & (~(1 << i)) 代表将 state 中所选数值的位置置零
                f[state]  = f[state & (~(1 << i))];
            }
        }
        return f[mask - 1];
    }
}
  • 时间复杂度:共有 2^n 的状态需要被转移,每次转移复杂度为 O(n),整体复杂度为 O(n * 2^n)
  • 空间复杂度:O(2^n)

总结

不难发现,其实两种状态压缩 DP 的思路其实是完全一样的。

只不过在朴素状压 DP 中我们是显式的枚举了考虑每一种长度的情况(存在维度 i),而在状压 DP(优化)中利用则 state中的

1的个数中蕴含的长度信息。

最后

这是我们「刷穿 LeetCode」系列文章的第 No.525 篇,系列开始于 2021/01/01,截止于起始日 LeetCode 上共有 1916 道题目,部分是有锁题,我们将先把所有不带锁的题目刷完。

在这个系列文章里面,除了讲解解题思路以外,还会尽可能给出最为简洁的代码。如果涉及通解还会相应的代码模板。

为了方便各位同学能够电脑上进行调试和提交代码,我建立了相关的仓库:https://github.com/SharingSource/LogicStack-LeetCode 。

在仓库地址里,你可以看到系列文章的题解链接、系列文章的相应代码、LeetCode 原题链接和其他优选题解。

0 人点赞