消息队列
消息队列使用场景
消息队列中间件是分布式系统中重要的组件,主要解决应用耦合,异步消息,削峰填谷等问题。实现高性能、高可用、可伸缩和最终一致性架构。
- 解耦:多个服务监听、处理同一条消息,避免多次rpc调用 异步消息
- 异步消息:消息发布者不用等待消息处理的的结果
- 削峰填谷:较大流量、写入场景,为下游I/O服务抗流量。当然大流量下就需要使用其他方案了。 消息驱动框架
- 消息驱动框架:在事件总线中,服务通过监听事件消息驱动服务完成相应动作。
消息队列模式
点对点模式,不可重复消费
多个生产者可以向同一个消息队列发送消息,一个消息在被一个消息者消费成功后,这条消息会被移除,其他消费者无法处理该消息。如果消费者处理一个消息失败了,那么这条消息会重新被消费。
发布/订阅模式
发布订阅模式需要进行注册、订阅,根据注册消费对应的消息。多个生产者可以将消息写到同一个Topic中,多种消息可以被同一个消费者消费。一个生产者生产的消息,同样也可以被多个消费者消费,只要他们进行过消息订阅。
选型参考
- 消息顺序:发送到队列的消息,消费时是否可以保证消费的顺序;
- 伸缩:当消息队列性能有问题,比如消费太慢,是否可以快速支持库容;当消费队列过多,浪费系统资源,是否可以支持缩容。
- 消息留存:消息消费成功后,是否还会继续保留在消息队列。
- 容错性:当一条消息消费失败后,是否有一些机制,保证这条消息是一种能成功,比如异步第三方退款消息,需要保证这条消息消费掉,才能确定给用户退款成功,所以必须保证这条消息消费成功的准确性。
- 消息可靠性:是否会存在丢消息的情况,比如有A/B两个消息,最后只有B消息能消费,A消息丢失;
- 消息时序:主要包括“消息存活时间”和“延迟消息”;
- 吞吐量:支持的最高并发数;
- 消息路由:根据路由规则,只订阅匹配路由规则的消息,比如有A/B两者规则的消息,消费者可以只订阅A消息,B消息不会消费。KafkaKafka是由Apache软件基金会开发的一个开源流处理平台,由Scala和Java编写。 该项目的目标是为处理实时数据提供一个统一、高吞吐、低延迟的平台。 其持久化层本质上是一个“按照分布式事务日志架构的大规模发布/订阅消息队列”,这使它作为企业级基础设施来处理流式数据非常有价值。(维基百科)基本术语Producer:消息生产者。一般情况下,一条消息会被发送到特定的主题上。通常情况下,写入的消息会通过轮询将消息写入各分区。生产者也可以通过设定消息key值将消息写入指定分区。写入分区的数据越均匀Kafka的性能才能更好发挥。
Kafka
Kafka是由Apache软件基金会开发的一个开源流处理平台,由Scala和Java编写。 该项目的目标是为处理实时数据提供一个统一、高吞吐、低延迟的平台。 其持久化层本质上是一个“按照分布式事务日志架构的大规模发布/订阅消息队列”,这使它作为企业级基础设施来处理流式数据非常有价值。(维基百科)
基本术语
Producer:消息生产者。一般情况下,一条消息会被发送到特定的主题上。通常情况下,写入的消息会通过轮询将消息写入各分区。生产者也可以通过设定消息key值将消息写入指定分区。写入分区的数据越均匀Kafka的性能才能更好发挥。
Topic:Topic是个抽象的虚拟概念,一个集群可以有多个Topic,作为一类消息的标识。一个生产者将消息发送到topic,消费者通过订阅Topic获取分区消息。
Partition:Partition是个物理概念,一个Topic对应一个或多个Partition。新消息会以追加的方式写入分区里,在同一个Partition里消息是有序的。Kafka通过分区,实现消息的冗余和伸缩性,以及支持物理上的并发读、写,大大提高了吞吐量。
Replicas:一个Partition有多个Replicas副本。这些副本保存在broker,每个broker存储着成百上千个不同主题和分区的副本,存储的内容分为两种:master副本,每个Partition都有一个master副本,所有内容的写入和消费都会经过master副本;follower副本不处理任何客户端的请求,只同步master的内容进行复制。如果master发生了异常,很快会有一个follower成为新的master。
Consumer:消息读取者。消费者订阅主题,并按照一定顺序读取消息。Kafka保证每个分区只能被一个消费者使用。
Offset:偏移量是一种元数据,是不断递增的整数。在消息写入时Kafka会把它添加到消息里。在分区内偏移量是唯一的。消费过程中,会将最后读取的偏移量存储在Kafka中,消费者关闭偏移量不会丢失,重启会继续从上次位置开始消费。
Broker:独立的Kafka服务器。一个Topic有N个Partition,一个集群有N个Broker,那么每个Broker都会存储一个这个Topic的Partition。如果某topic有N个partition,集群有(N M)个broker,那么其中有N个broker存储该topic的一个partition,剩下的M个broker不存储该topic的partition数据。如果某topic有N个partition,集群中broker数目少于N个,那么一个broker存储该topic的一个或多个partition。在实际生产环境中,尽量避免这种情况的发生,这种情况容易导致Kafka集群数据不均衡。
系统框架
第一个topic有两个生产,新消息被写入到partition 1或者partition 2,两个分区在broker1、broker2都有备份。有新消息写入后,两个follower分区会从两个master分区同步变更。对应的consumer会从两个master分区根据现在offset获取消息,并更新offset。
第二个topic只有一个生产者,同样对应两个partition,分散在Kafka集群的两个broker上。有新消息写入,两个follower分区会同步master变更。两个Consumer分别从不同的master分区获取消息。
优点
高吞吐量、低延迟:kafka每秒可以处理几十万条消息,它的延迟最低只有几毫秒;
可扩展性:kafka集群支持热扩展;
持久性、可靠性:消息被持久化到本地磁盘,并且支持数据备份防止数据丢失;
容错性:允许集群中节点故障,一个数据多个副本,少数机器宕机,不会丢失数据;
高并发:支持数千个客户端同时读写。
缺点
分区有序:仅在同一分区内保证有序,无法实现全局有序;
无延时消息:消费顺序是按照写入时的顺序,不支持延时消息
重复消费:消费系统宕机、重启导致offset未提交;
Rebalance:Rebalance的过程中consumer group下的所有消费者实例都会停止工作,等待Rebalance过程完成。
使用场景
日志收集:大量的日志消息先写入kafka,数据服务通过消费kafka消息将数据落地;
消息系统:解耦生产者和消费者、缓存消息等;
用户活动跟踪:kafka经常被用来记录web用户或者app用户的各种活动,如浏览网页、搜索、点击等活动,这些活动信息被各个服务器发布到kafka的topic中,然后消费者通过订阅这些topic来做实时的监控分析,亦可保存到数据库;
运营指标:记录运营、监控数据,包括收集各种分布式应用的数据,生产各种操作的集中反馈,比如报警和报告;
流式处理:比如spark streaming
RabbitMQ
RabbitMQ是实现了高级消息队列协议(AMQP)的开源消息代理软件(亦称面向消息的中间件(英语:Message-oriented middleware)。RabbitMQ服务器是用Erlang语言编写的,而群集和故障转移是构建在开放电信平台框架上的。所有主要的编程语言均有与代理接口通讯的客户端函式库。(维基百科)
基本术语
Broker:接收客户端链接实体,实现AMQP消息队列和路由功能;
Virtual Host:是一个虚拟概念,权限控制的最小单位。一个Virtual Host里包含多个Exchange和Queue;
Exchange:接收消息生产者的消息并将消息转发到队列。发送消息时根据不同ExchangeType的决定路由规则,ExchangeType常用的有:direct、fanout和topic三种;
Message Queue:消息队列,存储为被消费的消息;
Message:由Header和Body组成,Header是生产者添加的各种属性,包含Message是否持久化、哪个MessageQueue接收、优先级。Body是具体的消息内容;
Binding:Binding连接起了Exchange和Message Queue。在服务器运行时,会生成一张路由表,这张路由表上记录着MessageQueue的条件和BindingKey值。当Exchange收到消息后,会解析消息中的Header得到BindingKey,并根据路由表和ExchangeType将消息发送到对应的MessageQueue。最终的匹配模式是由ExchangeType决定;
Connection:在Broker和客户端之间的TCP连接;
Channel:信道。Broker和客户端只有tcp连接是不能发送消息的,必须创建信道。AMQP协议规定只有通过Channel才能执行AMQP命令。一个Connection可以包含多个Channel。之所以需要建立Channel,是因为每个TCP连接都是很宝贵的。如果每个客户端、每个线程都需要和Broker交互,都需要维护一个TCP连接的话是机器耗费资源的,一般建议共享Connection。RabbitMQ不建议客户端线程之前共享Channel,至少保证同一Channel发小消息是穿行的。
Command:AMQP命令,客户端通过Command来完成和AMQP服务器的交互。
系统框架
一条Message经过信道到达对应的Exchange,Exchange收到消息后解析出消息Header内容,获取消息BindingKey并根据Binding和ExchangeType将消息转发到对应的MessageQueue,最后通过Connection将消息传送的客户端。
ExchangeType
Direct:精确匹配
- 只有RoutingKey和BindingKey完全匹配的时候,消息队列才可以获取消息
- Broker默认提供一个Exchange,类型是Direct名字是空字符串,绑定到所有的Queue(这里通过Queue名字来区分)
Fanout:订阅、广播
- 这个模式会将消息转发到所有的路由的Queue中
Topic:通配符模式
- RoutingKey为一个句点号“. ”分隔的字符串(将被句点号“. ”分隔开的每一段独立的字符串称为一个单词),如“quick.orange.rabbit”。BindingKey与RoutingKey一样
- Bindingkey中的两个特殊字符"#"和“”用于模糊匹配,“#”用于匹配多个单次,“”用来匹配单个单词(包含零个)
优点
- 基于AMQP协议:除了Qpid,RabbitMQ是唯一一个实现了AMQP标准的消息服务器;
- 健壮、稳定、易用;
- 社区活跃,文档完善;
- 支持定时消息;
- 可插入的身份验证,授权,支持TLS和LDAP;
- 支持根据消息标识查询消息,也支持根据消息内容查询消息。
缺点
- erlang开发源码难懂,不利于做二次开发和维护;
- 接口和协议复杂,学习和维护成本较高。
总结
- erlang有并发优势,性能较好。虽然源码复杂,但是社区活跃度高,可以解决开发中遇到的问题;
- 业务流量不大的话可以选择功能比较完备的RabbitMQ。
Pulsar
PulsarApache Pulsar 是 Apache 软件基金会顶级项目,是下一代云原生分布式消息流平台,集消息、存储、轻量化函数式计算为一体,采用计算与存储分离架构设计,支持多租户、持久化存储、多机房跨区域数据复制,具有强一致性、高吞吐、低延时及高可扩展性等流数据存储特性,被看作是云原生时代实时消息流传输、存储和计算最佳解决方案。Pulsar 是一个 pub-sub (发布-订阅)模型的消息队列系统。(百科)
基本术语
Property:代表租户,每个property都可以代表一个团队、一个功能、一个产品线。一个property可包含多个namesapce,多租户是一种资源隔离手段,可以提高资源利用率;
Namespace:Pulsar的基本管理单元,在namaspace级别可设置权限、消息TTL、Retention 策略等。一个namaspace里的所有topic都继承相同的设置。命名空间分为两种:本地命名空间,只在集群内可见、全局命名空间对多个集群可见集群命名空间;
Producer:数据生产方,负责创建消息并将消息投递到 Pulsar 中;
Consumer:数据消费方,连接到 Pulsar接收消息并进行相应的处理;
Broker:无状态Proxy服务,负责接收消息、传递消息、集群负载均衡等操作,它对 client 屏蔽了服务端读写流程的复杂性,是保证数据一致性与数据负载均衡的重要角色。Broker 不会持久化保存元数据。可以扩容但不能缩容;
BookKeeper:有状态,负责持久化存储消息。当集群扩容时,Pulsar会在新增BookKeeper和Segment(即 Bookeeper 的 Ledger),不需要像kafka一样在扩容时进行Rebalance。扩容结果是 Fragments跨多个Bookies以带状分布,同一个Ledger的Fragments 分布在多个Bookie上,导致读取和写入会在多个 Bookies 之间跳跃;
ZooKeeper:存储 Pulsar 、 BookKeeper 的元数据,集群配置等信息,负责集群间的协调、服务发现等;
Topic:用作从producer到consumer传输消息。Pulsar在Topic级别拥有一个leader Broker,称之为拥有 Topic 的所有权,针对该 Topic 所有的 R/W 都经过该 Broker 完成。Topic的 Ledger 和 Fragment 之间映射关系等元数据存储在 Zookeeper 中,Pulsar Broker 需要实时跟踪这些关系进行读写流程;
Ledger:即Segment,Pulsar底层数据以Ledger的形式存储在BookKeeper上。是Pulsar删除的最小单位;
Fragment : 每个 Ledger 由若干 Fragment 组成。
系统框架
上面框架图分别演示了扩容、故障转移两种情况。扩容:因业务量增大扩容新增Bookie N,后续写入的数据segment x、segment y写入新增Bookie中,为保持均衡扩容结果如上图绿色模块所示。故障转移:Bookie 2的segment 4发生故障,Pulasr的Topic会立马从新选择Bookie 1作为处理读写的服务。
Broker是无状态的服务,只服务数据计算不存储,所以Pulsar 可以认为是一种基于 Proxy 的分布式系统。
优点
- 灵活扩容
- 无缝故障恢复
- 支持延时消息
- 内置的复制功能,用于跨地域复制如灾备
- 支持两种消费模型:流(独享模式)、队列(共享模式)
RocketMQ
RocketMQRocketMQ是一个分布式消息和流数据平台,具有低延迟、高性能、高可靠性、万亿级容量和灵活的可扩展性。RocketMQ是2012年阿里巴巴开源的第三代分布式消息中间件。(维基百科)基本术语Topic:一个Topic可以有0个、1个、多个生产者向其发送消息,一个生产者也可以同时向不同的Topic发送消息。一个Topic也可以被0个、1个、多个消费者订阅;
Tag:消息二级类型,可以为用户提供额外的灵活度,一条消息可以没有tag;
Producer:消息生产者;
Broker:存储消息,以Topic为纬度轻量级的队列;转发消息,单个Broker节点与所有的NameServer节点保持长连接及心跳,会定时将Topic信息注册到NameServer;
Consumer:消息消费者,负责接收并消费消息;
MessageQueue:消息的物理管理单位,一个Topic可以有多个Queue,Queue的引入实现了水平扩展的能力;
NameServer:负责对原数据的管理,包括Topic和路由信息,每个NameServer之间是没有通信的;
Group:一个组可以订阅多个Topic,ProducerGroup、ConsumerGroup分别是一类生产者和一类消费者;
Offset:通过Offset访问存储单元,RocketMQ中所有消息都是持久化的,且存储单元定长。Offset为Java Long类型,理论上100年内不会溢出,所以认为Message Queue是无限长的数据,Offset是下标;
Consumer:支持PUSH和PULL两种消费模式,支持集群消费和广播消费。
系统框架
优点
- 支持发布/订阅(Pub/Sub)和点对点(P2P)消息模型;
- 顺序队列:在一个队列中可靠的先进先出(FIFO)和严格的顺序传递; 支持拉(pull)和推(push)两种消息模式;
- 单一队列百万消息的堆积能力;
- 支持多种消息协议,如 JMS、MQTT 等;
- 分布式横向扩展架构
- 满足至少一次消息传递语义;
- 提供丰富的Dashboard,包含配置、指标和监控等;
- 支持的客户端,目前是java、c 及golang缺点
- 社区活跃度一般
- 延时消息:开源版不支持任意时间精度,仅支持特定的level使用场景
- 为金融互联网领域而生,对于可靠性要求很高的场景