河道污染物识别系统

2023-01-24 01:52:35 浏览数 (1)

河道污染物识别系统通过python yolo深度学习技术,河道污染物识别系统对现场画面中河道污染物以及漂浮物进行全天候实时监测,当河道污染物识别系统监测到出现污染物漂浮物时,立即抓拍存档触发告警。与C / C 等语言相比,Python速度较慢。也就是说,Python可以使用C / C 轻松扩展,这使我们可以在C / C 中编写计算密集型代码,并创建可用作Python模块的Python包装器。这给我们带来了两个好处:首先,代码与原始C / C 代码一样快(因为它是在后台工作的实际C 代码),其次,在Python中编写代码比使用C / C 更容易。

YOLO系列算法是一类典型的one-stage目标检测算法,其利用anchor box将分类与目标定位的回归问题结合起来,从而做到了高效、灵活和泛化性能好。Yolo意思是You Only Look Once,它并没有真正的去掉候选区域,而是创造性的将候选区和目标分类合二为一,看一眼图片就能知道有哪些对象以及它们的位置。

Yolo模型采用预定义预测区域的方法来完成目标检测,具体而言是将原始图像划分为 7x7=49 个网格(grid),每个网格允许预测出2个边框(bounding box,包含某个对象的矩形框),总共 49x2=98 个bounding box。我们将其理解为98个预测区,很粗略的覆盖了图片的整个区域,就在这98个预测区中进行目标检测。YOLO的结构非常简单,就是单纯的卷积、池化最后加了两层全连接,从网络结构上看,与前面介绍的CNN分类网络没有本质的区别,最大的差异是输出层用线性函数做激活函数,因为需要预测bounding box的位置(数值型),而不仅仅是对象的概率。所以粗略来说,YOLO的整个结构就是输入图片经过神经网络的变换得到一个输出的张量。

0 人点赞