基于CelebA数据集的GAN模型

2023-02-14 11:26:38 浏览数 (1)

上篇我们介绍了celebA数据集

CelebA Datasets——Readme

今天我们就使用这个数据集进行对我们的GAN模型进行训练

首先引入一个库

代码语言:javascript复制
mtcnn
是一个人脸识别的深度学习的库,传入一张人脸好骗,mtcnn库可以给我们返回四个坐标,用这四个坐标就可以组成一个矩形框也就是对应的人脸位置

安装方式:

代码语言:javascript复制
pip install mtcnn

教程中的用法:

下面是一个完整的实例,准备数据集

代码语言:javascript复制
# example of extracting and resizing faces into a new dataset
from os import listdir
from numpy import asarray
from numpy import savez_compressed
from PIL import Image
from mtcnn.mtcnn import MTCNN

然后加载图像

代码语言:javascript复制
# load an image as an rgb numpy array
def load_image(filename):
  # load image from file
  image = Image.open(filename)
  # convert to RGB, if needed
  image = image.convert('RGB')
  # convert to array
  pixels = asarray(image)
  return pixels

然后是提取面部:

代码语言:javascript复制
# extract the face from a loaded image and resize
def extract_face(model, pixels, required_size=(80, 80)):
  # detect face in the image
  faces = model.detect_faces(pixels)
  # skip cases where we could not detect a face
  if len(faces) == 0:
    return None
  # extract details of the face
  x1, y1, width, height = faces[0]['box']
  # force detected pixel values to be positive (bug fix)
  x1, y1 = abs(x1), abs(y1)
  # convert into coordinates
  x2, y2 = x1   width, y1   height
  # retrieve face pixels
  face_pixels = pixels[y1:y2, x1:x2]
  # resize pixels to the model size
  image = Image.fromarray(face_pixels)
  image = image.resize(required_size)
  face_array = asarray(image)
  return face_array

然后加载脸部的头像数据:

代码语言:javascript复制
# load images and extract faces for all images in a directory
def load_faces(directory, n_faces):
  # prepare model
  model = MTCNN()
  faces = list()
  # enumerate files
  for filename in listdir(directory):
    # load the image
    pixels = load_image(directory   filename)
    # get face
    face = extract_face(model, pixels)
    if face is None:
      continue
    # store
    faces.append(face)
    print(len(faces), face.shape)
    # stop once we have enough
    if len(faces) >= n_faces:
      break
  return asarray(faces)
  
 # directory that contains all images
directory = 'img_align_celeba/'
# load and extract all faces
all_faces = load_faces(directory, 50000)
print('Loaded: ', all_faces.shape)
# save in compressed format
savez_compressed('img_align_celeba.npz', all_faces)
  

上面这这一步会把数据压缩存储在一个npz的文件里,全是以numpy的格式保存的。

0 人点赞