准备环境
- pyscenic
micromamba activate SC
- 安装docker
需要有root权限或者在docker的用户组
代码语言:shell复制#1.Update the apt package index and install packages to allow apt to use a repository over HTTPS
sudo apt-get update
sudo apt-get install
ca-certificates
curl
gnupg
lsb-release
#2.Add Docker’s official GPG key
sudo mkdir -m 0755 -p /etc/apt/keyrings
curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg --dearmor -o /etc/apt/keyrings/docker.gpg
#3.Use the following command to set up the repository
echo
"deb [arch=$(dpkg --print-architecture) signed-by=/etc/apt/keyrings/docker.gpg] https://download.docker.com/linux/ubuntu
$(lsb_release -cs) stable" | sudo tee /etc/apt/sources.list.d/docker.list > /dev/null
#4.install docker
sudo apt-get update
sudo apt-get install docker-ce docker-ce-cli containerd.io docker-buildx-plugin docker-compose-plugin
#5.chmod
sudo groupadd docker
sudo usermod -aG docker ${USER} # 把非root用户添加到用户组
sudo systemctl restart docker
- docker pyscenic
docker pull aertslab/pyscenic:0.12.1
准备数据库文件
代码语言:shell复制#>>>downlod_SCENIC.sh>>>
# 准备数据库 (人)
mkdir -p ~/DataHub/SCENIC
cd ~/DataHub/SCENIC
# get ranking database
wget https://resources.aertslab.org/cistarget/databases/homo_sapiens/hg38/refseq_r80/mc_v10_clust/gene_based/hg38_10kbp_up_10kbp_down_full_tx_v10_clust.genes_vs_motifs.rankings.feather
wget https://resources.aertslab.org/cistarget/databases/homo_sapiens/hg38/refseq_r80/mc_v10_clust/gene_based/hg38_10kbp_up_10kbp_down_full_tx_v10_clust.genes_vs_motifs.rankings.feather.sha1sum.txt
sha1sum -c hg38_10kbp_up_10kbp_down_full_tx_v10_clust.genes_vs_motifs.rankings.feather.sha1sum.txt hg38_10kbp_up_10kbp_down_full_tx_v10_clust.genes_vs_motifs.rankings.feather
# get motif database
wget https://resources.aertslab.org/cistarget/motif2tf/motifs-v10nr_clust-nr.hgnc-m0.001-o0.0.tbl
# TF list # 查看文本文件是不是只有一列基因
wget https://github.com/aertslab/pySCENIC/blob/master/resources/hs_hgnc_tfs.txt
#>>>downlod_SCENIC.sh>>>
nohup zsh downlod_SCENIC.sh &> downlod_SCENIC.sh.log &
准备count数据
代码语言:Python复制from pathlib import Path
import numpy as np
import pandas as pd
import scanpy as sc
import matplotlib.pyplot as plt
import loompy
OUTPUT_DIR = "output/05.SCENIC"
Path(OUTPUT_DIR).mkdir(parents=True,exist_ok=True)
adata = sc.read_h5ad('output/03.inferCNV/adata.h5')
adata_raw = adata.raw.to_adata()
rownames = dict(Gene=adata_raw.var_names.tolist())
colnames = dict(CellID=adata_raw.obs_names.tolist())
loompy.create(filename=OUTPUT_DIR "/X.loom", layers=adata_raw.X.transpose(), row_attrs=rownames, col_attrs=colnames)
pyscenic CLI
建议使用下边的docker运行这两个步骤
代码语言:shell复制# human
n_jobs=12
mtx_path=X.loom
dir=/home/victor/DataHub/SCENIC
tfs=$dir/hs_hgnc_tfs.txt
feather=$dir/hg38_10kbp_up_10kbp_down_full_tx_v10_clust.genes_vs_motifs.rankings.feather
tbl=$dir/motifs-v10nr_clust-nr.hgnc-m0.001-o0.0.tbl
# STEP 1/3: Gene regulatory network inference, and generation of co-expression modules
pyscenic grn
--seed 1314
--num_workers ${n_jobs}
--method grnboost2
--output grn.csv
--sparse
${mtx_path}
${tfs}
# STEP 2/3: Regulon prediction (cisTarget)
pyscenic ctx
--num_workers ${n_jobs}
--mode dask_multiprocessing
--mask_dropouts
--sparse
--output ctx.csv
--expression_mtx_fname ${mtx_path}
--annotations_fname ${tbl}
grn.csv
${feather}
- 运行pySCENIC
cd output/05.SCENIC
micromamba activate SC
nohup zsh ~/Project/SC10X/src/run_SCENIC.sh &> run_SCENIC.sh.log &
docker运行脚本
- docker脚本
#>>>scenic_docker.sh>>>
n_jobs=20
input_dir=/home/victor/DataHub/SCENIC
output_dir=/home/victor/Project/SC10X/output/05.SCENIC
# STEP 1/3: Gene regulatory network inference, and generation of co-expression modules
docker run --rm
-v ${input_dir}:/input_data
-v ${output_dir}:/output_data
aertslab/pyscenic:0.12.1 pyscenic grn
--num_workers ${n_jobs}
--method grnboost2
--output /output_data/grn.csv
--sparse
/input_data/X.loom
/input_data/hs_hgnc_tfs.txt
# STEP 2/3: Regulon prediction (cisTarget)
docker run --rm
-v ${input_dir}:/input_data
-v ${output_dir}:/output_data
aertslab/pyscenic:0.12.1 pyscenic ctx
/output_data/grn.csv
/input_data/hg38_10kbp_up_10kbp_down_full_tx_v10_clust.genes_vs_motifs.rankings.feather
--mask_dropouts
--sparse
--annotations_fname /input_data/motifs-v10nr_clust-nr.hgnc-m0.001-o0.0.tbl
--expression_mtx_fname /output_data/X.loom
--mode "custom_multiprocessing"
--output /output_data/ctx.csv
--num_workers ${n_jobs}
#<<<scenic_docker.sh<<<
- 运行
cd output/05.SCENIC
nohup zsh ~/Project/SC10X/src/scenic_docker.sh &> scenic_docker.sh.log &
在Jupyter中运行
代码语言:shell复制from pathlib import Path
import operator
import cytoolz
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import scanpy as sc
from pyscenic.utils import load_motifs
from pyscenic.aucell import aucell
from pyscenic.binarization import binarize
from pyscenic.plotting import plot_binarization, plot_rss
from pyscenic.transform import df2regulons
import bioquest as bq #https://jihulab.com/BioQuest/bioquest
代码语言:shell复制OUTPUT_DIR='output/05.SCENIC'
Path(OUTPUT_DIR).mkdir(parents=True,exist_ok=True)
代码语言:shell复制adata = sc.read_h5ad('output/03.inferCNV/adata.h5')
adata_raw = adata.raw.to_adata()
自定义函数
代码语言:shell复制def filter_regulons(motifs, db_names=("hg38_10kbp_up_10kbp_down_full_tx_v10_clust.genes_vs_motifs.rankings",)):
"""
从ctx.csv中筛选重要的regulons,之后再运行AUCell
"""
motifs.columns = motifs.columns.droplevel(0)
def contains(*elems):
def f(context):
return any(elem in context for elem in elems)
return f
# For the creation of regulons we only keep the 10-species databases and the activating modules. We also remove the
# enriched motifs for the modules that were created using the method 'weight>50.0%' (because these modules are not part
# of the default settings of modules_from_adjacencies anymore.
lg = np.fromiter(map(cytoolz.compose(operator.not_, contains('weight>50.0%')), motifs.Context), dtype=np.bool) &
np.fromiter(map(contains(*db_names), motifs.Context), dtype=np.bool) &
np.fromiter(map(contains('activating'), motifs.Context), dtype=np.bool)
motifs = motifs.loc[lg,:]
# We build regulons only using enriched motifs with a NES of 3.0 or higher; we take only directly annotated TFs or TF annotated
# for an orthologous gene into account; and we only keep regulons with at least 10 genes.
regulons = list(filter(lambda r: len(r) >= 10,
df2regulons(motifs[(motifs.NES >= 3.0)
& ((motifs['Annotation'] == 'gene is directly annotated')
| (motifs['Annotation'].str.startswith('gene is orthologous to')
& motifs['Annotation'].str.endswith('which is directly annotated for motif')))
])))
# Rename regulons, i.e. remove suffix.
return list(map(lambda r: r.rename(r.transcription_factor), regulons))
STEP 3/3: Cellular enrichment (AUCell)
- 从ctx.csv中筛选重要的regulons,之后再运行AUCell
df_motifs = load_motifs("output/05.SCENIC/ctx.csv")
regulons = filter_regulons(df_motifs)
- count数据
exp_mtx=pd.DataFrame(adata_raw.X.toarray(),columns=adata_raw.var_names,index=adata_raw.obs_names)
- 运行aucell
auc_mtx = aucell(exp_mtx=exp_mtx, signatures=regulons,seed=1314, num_workers=12)
auc_mtx.to_csv(OUTPUT_DIR "/aucell.csv")
STEP 4/3: Regulon activity binarization (optional)
代码语言:shell复制auc_mtx=pd.read_csv(OUTPUT_DIR "/aucell.csv", index_col=0)
bin_mtx, thresholds = binarize(auc_mtx,seed=1314,num_workers=12)
bin_mtx.to_csv("bin_mtx.csv")
thresholds.to_frame().rename(columns={0:'threshold'}).to_csv("thresholds.csv")
输出文件
- pyscenic grn
Input: raw count或者log后的count
Output: List of adjacencies between a TF and its targets stored in grn.csv
- pyscenic ctx
Output: List of adjacencies between a TF and its targets stored in ctx.csv
- pyscenic aucell
Output: aucell.csv