应用人脸活体检测技术,保障人脸识别技术的安全性

2023-02-22 20:27:11 浏览数 (1)

目前,深度学习的发展使人脸识别技术的性能有了质的提升,其具有自然、直观、易用等优点, 已广泛应用于智能安防、公安刑侦、金融社保、智能家居、电子商务、人脸娱乐、医疗教育等领域, 应用场景丰富, 应用市场潜力巨大。然而, 人脸识别技术的广泛应用亦使得人脸识别技术的安全性问题日益凸显,传统的人脸识别研究专注于整体识别性能的提升, 并不判断当前获取的人脸图像是来自活体人脸还是假体人脸。若不法分子利用传统人脸识别技术的这个安全性隐患, 使用假体人脸成功冒用合法用户身份, 从短期来看, 侵犯了合法用户的权益, 较大可能造成生命财产损失; 从长远来看, 亦会影响人脸识别技术的进一步广泛深入应用。因此, 如何准确识别活体人脸与假体人脸, 保障人脸识别技术的安全性成为一个亟待解决的问题。因此,人脸活体检测研究具有非常重要的应用价值。

      人脸活体检测主要是通过识别活体上的生理信息来进行,它把生理信息作为生命特征来区分用照片、硅胶、塑料等非生命物质伪造的生物特征。通俗地讲,就是在人脸识别的过程中证明你确实是个“活人”,不是照片、视频或其他什么,证明你是个人,你就是你。人脸活体检测技术对攻击有多重对抗措施,下面就带大家去感受下其中的奥秘。

      人脸活体检测主要内容包括:人脸检测、3D检测、活体算法检测、连续性检测。

      人脸检测:定位人脸在哪里,检测活体过程中是否出现无人脸、多人脸的情况,可有效防止两个人的切换或人与照片的切换。

      3D检测:验证采集到的是否为立体人像,能够防止平面照片、不同弯曲程度的照片等。

      活体算法检测——为了确保你是“活的你”,人脸活体检测过程通常包含几个鉴别步骤,比如眨眼判别:对于可以要求用户配合的应用系统,要求用户眨眼一到两次,人脸识别系统会根据自动判别得到的眼睛的张合状态的变化情况来区分照片和人脸;或者嘴部张合判别:与眨眼判别类似,要求用户张开、闭合嘴巴一到两次,人脸识别系统据此区分照片与真实人脸。

      连续性检测——和人脸活体检测同时使用能够更好的防止中途切换人。验证人脸运动轨迹是否正常,如果中途换人会出现异常运动;从安全性角度能够防止跳过活体检测直接替换采集的照片。此外,为了防止活体采集的照片被篡改,还可以对采集的照片进行加密处理,保障信息安全。

      随着人脸识别技术的广泛应用, 人脸活体检测作为保障人脸识别技术安全性的关键环节, 逐渐成为计算机视觉、模式识别、人脸识别领域非常活跃的研究方向,也将推动人脸识别技术、生物识别技术更广泛、更深入的应用。

      申明:文章由本人原创,禁止转载,如有疑问请致邮:283870550@qq.com

0 人点赞